Loading…
Visible Light-Driven Photocatalytic Degradation of Ciprofloxacin, Ampicillin and Erythromycin by Zinc Ferrite Immobilized on Chitosan
This study investigated the synthesis of zinc ferrite immobilized on chitosan (ZnFe2O4@Chitosan) and its application in the photodegradation of ciprofloxacin (CIP), ampicillin (AMP) and erythromycin (ERY) in aqueous solution. Results from Fourier transform infrared spectroscopy (FTIR) revealed peaks...
Saved in:
Published in: | Resources (Basel) 2022-09, Vol.11 (10), p.81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigated the synthesis of zinc ferrite immobilized on chitosan (ZnFe2O4@Chitosan) and its application in the photodegradation of ciprofloxacin (CIP), ampicillin (AMP) and erythromycin (ERY) in aqueous solution. Results from Fourier transform infrared spectroscopy (FTIR) revealed peaks suggesting its synthesis, while signals from X-ray diffraction (XRD) showed diffraction patterns confirming the synthesis of ZnFe2O4@Chitosan with a crystallite size of 35.14 nm. Scanning electron microscopy (SEM) revealed a homogeneous morphology with a surface area of 12.96 m2 g−1 from the Brunauer–Emmett–Teller (BET) analysis. The vibrating sample magnetometry (VSM) result revealed a saturation magnetization of 2.38 emu g−1. The photodegradation study of CIP, AMP and ERY showed that both photodegradation and adsorption were taking place at the same time with the percentage degradation efficiency in the order CIP (99.80 ± 0.20%) > AMP (94.50 ± 0.10%) > ERY (83.20 ± 0.20%). ZnFe2O4@Chitosan exhibited high stability with capacity > 90% even at the 15th regeneration cycle, suggesting a viable economic value of ZnFe2O4@Chitosan. |
---|---|
ISSN: | 2079-9276 2079-9276 |
DOI: | 10.3390/resources11100081 |