Loading…

Comparison of Ultrasound Contrast between H2O2-Responsive Nanoparticles and Microbubble Contrast According to Muscle Injury in Rat Models

Ultrasound contrast agents are clinically used for diagnosis of internal organs, but ultrasound contrast agents are rarely applied clinically in musculoskeletal disorders. Our study aims to comparatively analyze the differences between ultrasonographic images through peri-injury injection of the cli...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2023-11, Vol.13 (21), p.3320
Main Authors: Kim, Da-Sol, Song, Nanhee, Lee, Dongwon, Kim, Gi-Wook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasound contrast agents are clinically used for diagnosis of internal organs, but ultrasound contrast agents are rarely applied clinically in musculoskeletal disorders. Our study aims to comparatively analyze the differences between ultrasonographic images through peri-injury injection of the clinically used microbubble and researched nanoparticle contrast agents in various muscular injury models. To compare contrast-enhanced images in different muscle injury models, we prepared groups of rats with sham, laceration, punch, contusion, and toxin injection injuries. We measured H2O2 levels using the Amplex Red assay by extracting tissue from the damaged area. As comparative contrast agents, SonoVue®, a commercially available microbubble contrast agent, and poly(vanillinoxalte) (PVO) nanoparticles, which are H2O2-responsive nanoparticles, were used. The difference in contrast between the two contrast agents was recorded as an ultrasound movie, and J-image software 1.53p was used to quantify and analyze the maximum and minimum echogenicity values of the images after contrast enhancement. In the Amplex red assay for the highest H2O2 level in each muscle injury model, the maximum level showed 24 h after the modeling. In the sham rats, PVO injection showed no increased echogenicity except at the needle insertion site, but SonoVue® injection showed increased echo signal throughout the injected muscle immediately after injection. One day after the preparation of the lesion, PVO and SonoVue® were injected into the lesion site and ultrasound was performed on the lesion site. After the injection of PVO nanoparticles, contrast enhancement was observed at the lesion site immediately. SonoVue® injections, on the other hand, showed a widespread pattern of echo signals and an increase in echo retention only at the lesion site over time, but this was not clear. There were statistically significant differences between the highest and lowest echogenicity in PVO and SonoVue® contrast-enhanced images in all models. Contrast enhancement lasted more than 3 h in the PVO injection, but disappeared within 3 h in the SonoVue® injection. PVO nanoparticles showed the possibility of physiologic contrast by CO2 generated by conjugation with H2O2 generated by muscle injuries, and SonoVue® injection observed the possibility of microbubble contrast as a contrast agent with a pooling effect that lasts longer on the lesion. Further research is needed to investigate the use of various ultras
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics13213320