Loading…

Tribological characterization of nanoparticle filled PTFE: Wear-induced crystallinity increase and filler accumulation

The present research aims to clarify the friction and wear behavior, the transfer layer formation, and the wear mechanism of mono-filled polytetrafluoroethylene (PTFE). A well-known limitation of PTFE is the low wear resistance, which can be surpassed with the use of micro- or nanoparticles. The app...

Full description

Saved in:
Bibliographic Details
Published in:Express polymer letters 2021-10, Vol.15 (10), p.972-986
Main Authors: Toth, L. F., Szebenyi, G., Sukumaran, J., De Baets, P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present research aims to clarify the friction and wear behavior, the transfer layer formation, and the wear mechanism of mono-filled polytetrafluoroethylene (PTFE). A well-known limitation of PTFE is the low wear resistance, which can be surpassed with the use of micro- or nanoparticles. The applied fillers were graphene, alumina (Al2O3), boehmite alumina (BA80), and hydrotalcite (MG70). The samples were produced by room temperature pressing - free sintering method. All specimens were tested with a pin-on-disc tribo-tester in dry contact condition against 42CrMo4 steel disc counterface with 3 MPa contact pressure and 0.1 mm/s sliding speed. PTFE filled with 4 wt% Al2O3 achieved the highest wear resistance; the increase was more than two orders of magnitude compared to the neat PTFE. This improvement comes from the protective transfer layer formation due to the Al2O3 and the iron-oxide accumulation on the polymer contact surface. Significant wear-induced crystallinity was also registered, which originated from the mechanical chain scission of the PTFE molecular chains during the wear process.
ISSN:1788-618X
1788-618X
DOI:10.3144/expresspolymlett.2021.78