Loading…

Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia

This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duratio...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-08, Vol.22 (16), p.8636
Main Authors: Lukyanova, Ludmila, Germanova, Elita, Khmil, Natalya, Pavlik, Lybov, Mikheeva, Irina, Shigaeva, Maria, Mironova, Galina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3
cites cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3
container_end_page
container_issue 16
container_start_page 8636
container_title International journal of molecular sciences
container_volume 22
creator Lukyanova, Ludmila
Germanova, Elita
Khmil, Natalya
Pavlik, Lybov
Mikheeva, Irina
Shigaeva, Maria
Mironova, Galina
description This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.
doi_str_mv 10.3390/ijms22168636
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1</doaj_id><sourcerecordid>2624241939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</originalsourceid><addsrcrecordid>eNpdkt9vFCEQgDdGY2v1zT-AxBcfPGVh4JYXk6bpr6SNidpnAizccWHhBLbxjH98aa8xrU_A8M2Xycx03fsef6ZU4C9-MxVCej5wyl90hz0QssCYL18-uR90b0rZYEwoYeJ1d0ABgFHAh93fH34VVfBxhb6nYFFy6NrXZNYpjtmrgE7jn91kC1JxRDehZlVqnk2ds0U-orq26CzlSVWf4kNyk5g5qIyurVmr6MtU7uPHo9rWPVUTutht02-v3navnArFvns8j7qbs9OfJxeLq2_nlyfHVwsDjNUFMQIGjdlyZM4xTpURFGwrf1BguOXcOqK1BsvJQJ0Wfe8wgHIgQGMjRnrUXe69Y1Ibuc1-Unknk_LyIZDySqpcvQlWCm1hKQYnHDPglBiG9nDG6lEA1rZvrq9713bWkx2Nja0n4Zn0-U_0a7lKt3KggoGgTfDxUZDTr9mWKidfjA1BRZvmIgnjHAPpCTT0w3_oJs25jatRnACBXlDRqE97yuRUSrbuXzE9lvcrIp-uCL0D-FCwZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624241939</pqid></control><display><type>article</type><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</creator><creatorcontrib>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</creatorcontrib><description>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22168636</identifier><identifier>PMID: 34445340</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; adaptation to hypoxia ; Animals ; Catalytic subunits ; catalytic subunits of mitochondrial complexes (MC- I-V) ; Cerebral cortex ; Electron transport ; Enzymes ; Exposure ; Homeostasis ; Hypoxia ; Low resistance ; Metabolism ; Mitochondria ; mitochondrial dynamics ; mitochondrial enzymes ; Molecular modelling ; Oxygen probes ; Respiration ; Ultrastructure</subject><ispartof>International journal of molecular sciences, 2021-08, Vol.22 (16), p.8636</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</citedby><cites>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</cites><orcidid>0000-0003-1259-9930 ; 0000-0002-3335-9269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624241939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624241939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lukyanova, Ludmila</creatorcontrib><creatorcontrib>Germanova, Elita</creatorcontrib><creatorcontrib>Khmil, Natalya</creatorcontrib><creatorcontrib>Pavlik, Lybov</creatorcontrib><creatorcontrib>Mikheeva, Irina</creatorcontrib><creatorcontrib>Shigaeva, Maria</creatorcontrib><creatorcontrib>Mironova, Galina</creatorcontrib><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><title>International journal of molecular sciences</title><description>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</description><subject>Adaptation</subject><subject>adaptation to hypoxia</subject><subject>Animals</subject><subject>Catalytic subunits</subject><subject>catalytic subunits of mitochondrial complexes (MC- I-V)</subject><subject>Cerebral cortex</subject><subject>Electron transport</subject><subject>Enzymes</subject><subject>Exposure</subject><subject>Homeostasis</subject><subject>Hypoxia</subject><subject>Low resistance</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>mitochondrial dynamics</subject><subject>mitochondrial enzymes</subject><subject>Molecular modelling</subject><subject>Oxygen probes</subject><subject>Respiration</subject><subject>Ultrastructure</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9vFCEQgDdGY2v1zT-AxBcfPGVh4JYXk6bpr6SNidpnAizccWHhBLbxjH98aa8xrU_A8M2Xycx03fsef6ZU4C9-MxVCej5wyl90hz0QssCYL18-uR90b0rZYEwoYeJ1d0ABgFHAh93fH34VVfBxhb6nYFFy6NrXZNYpjtmrgE7jn91kC1JxRDehZlVqnk2ds0U-orq26CzlSVWf4kNyk5g5qIyurVmr6MtU7uPHo9rWPVUTutht02-v3navnArFvns8j7qbs9OfJxeLq2_nlyfHVwsDjNUFMQIGjdlyZM4xTpURFGwrf1BguOXcOqK1BsvJQJ0Wfe8wgHIgQGMjRnrUXe69Y1Ibuc1-Unknk_LyIZDySqpcvQlWCm1hKQYnHDPglBiG9nDG6lEA1rZvrq9713bWkx2Nja0n4Zn0-U_0a7lKt3KggoGgTfDxUZDTr9mWKidfjA1BRZvmIgnjHAPpCTT0w3_oJs25jatRnACBXlDRqE97yuRUSrbuXzE9lvcrIp-uCL0D-FCwZg</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Lukyanova, Ludmila</creator><creator>Germanova, Elita</creator><creator>Khmil, Natalya</creator><creator>Pavlik, Lybov</creator><creator>Mikheeva, Irina</creator><creator>Shigaeva, Maria</creator><creator>Mironova, Galina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1259-9930</orcidid><orcidid>https://orcid.org/0000-0002-3335-9269</orcidid></search><sort><creationdate>20210811</creationdate><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><author>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>adaptation to hypoxia</topic><topic>Animals</topic><topic>Catalytic subunits</topic><topic>catalytic subunits of mitochondrial complexes (MC- I-V)</topic><topic>Cerebral cortex</topic><topic>Electron transport</topic><topic>Enzymes</topic><topic>Exposure</topic><topic>Homeostasis</topic><topic>Hypoxia</topic><topic>Low resistance</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>mitochondrial dynamics</topic><topic>mitochondrial enzymes</topic><topic>Molecular modelling</topic><topic>Oxygen probes</topic><topic>Respiration</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukyanova, Ludmila</creatorcontrib><creatorcontrib>Germanova, Elita</creatorcontrib><creatorcontrib>Khmil, Natalya</creatorcontrib><creatorcontrib>Pavlik, Lybov</creatorcontrib><creatorcontrib>Mikheeva, Irina</creatorcontrib><creatorcontrib>Shigaeva, Maria</creatorcontrib><creatorcontrib>Mironova, Galina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukyanova, Ludmila</au><au>Germanova, Elita</au><au>Khmil, Natalya</au><au>Pavlik, Lybov</au><au>Mikheeva, Irina</au><au>Shigaeva, Maria</au><au>Mironova, Galina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-08-11</date><risdate>2021</risdate><volume>22</volume><issue>16</issue><spage>8636</spage><pages>8636-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34445340</pmid><doi>10.3390/ijms22168636</doi><orcidid>https://orcid.org/0000-0003-1259-9930</orcidid><orcidid>https://orcid.org/0000-0002-3335-9269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-08, Vol.22 (16), p.8636
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1
source Publicly Available Content Database; PubMed Central
subjects Adaptation
adaptation to hypoxia
Animals
Catalytic subunits
catalytic subunits of mitochondrial complexes (MC- I-V)
Cerebral cortex
Electron transport
Enzymes
Exposure
Homeostasis
Hypoxia
Low resistance
Metabolism
Mitochondria
mitochondrial dynamics
mitochondrial enzymes
Molecular modelling
Oxygen probes
Respiration
Ultrastructure
title Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20Role%20of%20Mitochondrial%20Enzymes%20and%20Ultrastructure%20in%20the%20Formation%20of%20Molecular%20Mechanisms%20of%20Adaptation%20to%20Hypoxia&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lukyanova,%20Ludmila&rft.date=2021-08-11&rft.volume=22&rft.issue=16&rft.spage=8636&rft.pages=8636-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22168636&rft_dat=%3Cproquest_doaj_%3E2624241939%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624241939&rft_id=info:pmid/34445340&rfr_iscdi=true