Loading…
Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia
This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duratio...
Saved in:
Published in: | International journal of molecular sciences 2021-08, Vol.22 (16), p.8636 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3 |
container_end_page | |
container_issue | 16 |
container_start_page | 8636 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Lukyanova, Ludmila Germanova, Elita Khmil, Natalya Pavlik, Lybov Mikheeva, Irina Shigaeva, Maria Mironova, Galina |
description | This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined. |
doi_str_mv | 10.3390/ijms22168636 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1</doaj_id><sourcerecordid>2624241939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</originalsourceid><addsrcrecordid>eNpdkt9vFCEQgDdGY2v1zT-AxBcfPGVh4JYXk6bpr6SNidpnAizccWHhBLbxjH98aa8xrU_A8M2Xycx03fsef6ZU4C9-MxVCej5wyl90hz0QssCYL18-uR90b0rZYEwoYeJ1d0ABgFHAh93fH34VVfBxhb6nYFFy6NrXZNYpjtmrgE7jn91kC1JxRDehZlVqnk2ds0U-orq26CzlSVWf4kNyk5g5qIyurVmr6MtU7uPHo9rWPVUTutht02-v3navnArFvns8j7qbs9OfJxeLq2_nlyfHVwsDjNUFMQIGjdlyZM4xTpURFGwrf1BguOXcOqK1BsvJQJ0Wfe8wgHIgQGMjRnrUXe69Y1Ibuc1-Unknk_LyIZDySqpcvQlWCm1hKQYnHDPglBiG9nDG6lEA1rZvrq9713bWkx2Nja0n4Zn0-U_0a7lKt3KggoGgTfDxUZDTr9mWKidfjA1BRZvmIgnjHAPpCTT0w3_oJs25jatRnACBXlDRqE97yuRUSrbuXzE9lvcrIp-uCL0D-FCwZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624241939</pqid></control><display><type>article</type><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</creator><creatorcontrib>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</creatorcontrib><description>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22168636</identifier><identifier>PMID: 34445340</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; adaptation to hypoxia ; Animals ; Catalytic subunits ; catalytic subunits of mitochondrial complexes (MC- I-V) ; Cerebral cortex ; Electron transport ; Enzymes ; Exposure ; Homeostasis ; Hypoxia ; Low resistance ; Metabolism ; Mitochondria ; mitochondrial dynamics ; mitochondrial enzymes ; Molecular modelling ; Oxygen probes ; Respiration ; Ultrastructure</subject><ispartof>International journal of molecular sciences, 2021-08, Vol.22 (16), p.8636</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</citedby><cites>FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</cites><orcidid>0000-0003-1259-9930 ; 0000-0002-3335-9269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2624241939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2624241939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Lukyanova, Ludmila</creatorcontrib><creatorcontrib>Germanova, Elita</creatorcontrib><creatorcontrib>Khmil, Natalya</creatorcontrib><creatorcontrib>Pavlik, Lybov</creatorcontrib><creatorcontrib>Mikheeva, Irina</creatorcontrib><creatorcontrib>Shigaeva, Maria</creatorcontrib><creatorcontrib>Mironova, Galina</creatorcontrib><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><title>International journal of molecular sciences</title><description>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</description><subject>Adaptation</subject><subject>adaptation to hypoxia</subject><subject>Animals</subject><subject>Catalytic subunits</subject><subject>catalytic subunits of mitochondrial complexes (MC- I-V)</subject><subject>Cerebral cortex</subject><subject>Electron transport</subject><subject>Enzymes</subject><subject>Exposure</subject><subject>Homeostasis</subject><subject>Hypoxia</subject><subject>Low resistance</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>mitochondrial dynamics</subject><subject>mitochondrial enzymes</subject><subject>Molecular modelling</subject><subject>Oxygen probes</subject><subject>Respiration</subject><subject>Ultrastructure</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9vFCEQgDdGY2v1zT-AxBcfPGVh4JYXk6bpr6SNidpnAizccWHhBLbxjH98aa8xrU_A8M2Xycx03fsef6ZU4C9-MxVCej5wyl90hz0QssCYL18-uR90b0rZYEwoYeJ1d0ABgFHAh93fH34VVfBxhb6nYFFy6NrXZNYpjtmrgE7jn91kC1JxRDehZlVqnk2ds0U-orq26CzlSVWf4kNyk5g5qIyurVmr6MtU7uPHo9rWPVUTutht02-v3navnArFvns8j7qbs9OfJxeLq2_nlyfHVwsDjNUFMQIGjdlyZM4xTpURFGwrf1BguOXcOqK1BsvJQJ0Wfe8wgHIgQGMjRnrUXe69Y1Ibuc1-Unknk_LyIZDySqpcvQlWCm1hKQYnHDPglBiG9nDG6lEA1rZvrq9713bWkx2Nja0n4Zn0-U_0a7lKt3KggoGgTfDxUZDTr9mWKidfjA1BRZvmIgnjHAPpCTT0w3_oJs25jatRnACBXlDRqE97yuRUSrbuXzE9lvcrIp-uCL0D-FCwZg</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Lukyanova, Ludmila</creator><creator>Germanova, Elita</creator><creator>Khmil, Natalya</creator><creator>Pavlik, Lybov</creator><creator>Mikheeva, Irina</creator><creator>Shigaeva, Maria</creator><creator>Mironova, Galina</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1259-9930</orcidid><orcidid>https://orcid.org/0000-0002-3335-9269</orcidid></search><sort><creationdate>20210811</creationdate><title>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</title><author>Lukyanova, Ludmila ; Germanova, Elita ; Khmil, Natalya ; Pavlik, Lybov ; Mikheeva, Irina ; Shigaeva, Maria ; Mironova, Galina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>adaptation to hypoxia</topic><topic>Animals</topic><topic>Catalytic subunits</topic><topic>catalytic subunits of mitochondrial complexes (MC- I-V)</topic><topic>Cerebral cortex</topic><topic>Electron transport</topic><topic>Enzymes</topic><topic>Exposure</topic><topic>Homeostasis</topic><topic>Hypoxia</topic><topic>Low resistance</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>mitochondrial dynamics</topic><topic>mitochondrial enzymes</topic><topic>Molecular modelling</topic><topic>Oxygen probes</topic><topic>Respiration</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukyanova, Ludmila</creatorcontrib><creatorcontrib>Germanova, Elita</creatorcontrib><creatorcontrib>Khmil, Natalya</creatorcontrib><creatorcontrib>Pavlik, Lybov</creatorcontrib><creatorcontrib>Mikheeva, Irina</creatorcontrib><creatorcontrib>Shigaeva, Maria</creatorcontrib><creatorcontrib>Mironova, Galina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukyanova, Ludmila</au><au>Germanova, Elita</au><au>Khmil, Natalya</au><au>Pavlik, Lybov</au><au>Mikheeva, Irina</au><au>Shigaeva, Maria</au><au>Mironova, Galina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-08-11</date><risdate>2021</risdate><volume>22</volume><issue>16</issue><spage>8636</spage><pages>8636-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34445340</pmid><doi>10.3390/ijms22168636</doi><orcidid>https://orcid.org/0000-0003-1259-9930</orcidid><orcidid>https://orcid.org/0000-0002-3335-9269</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-08, Vol.22 (16), p.8636 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9be4798f9f5c4fa98898ffcebd940be1 |
source | Publicly Available Content Database; PubMed Central |
subjects | Adaptation adaptation to hypoxia Animals Catalytic subunits catalytic subunits of mitochondrial complexes (MC- I-V) Cerebral cortex Electron transport Enzymes Exposure Homeostasis Hypoxia Low resistance Metabolism Mitochondria mitochondrial dynamics mitochondrial enzymes Molecular modelling Oxygen probes Respiration Ultrastructure |
title | Signaling Role of Mitochondrial Enzymes and Ultrastructure in the Formation of Molecular Mechanisms of Adaptation to Hypoxia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20Role%20of%20Mitochondrial%20Enzymes%20and%20Ultrastructure%20in%20the%20Formation%20of%20Molecular%20Mechanisms%20of%20Adaptation%20to%20Hypoxia&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Lukyanova,%20Ludmila&rft.date=2021-08-11&rft.volume=22&rft.issue=16&rft.spage=8636&rft.pages=8636-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22168636&rft_dat=%3Cproquest_doaj_%3E2624241939%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-2c948b057d5ff563ac934e3408a4c6e66ef2bbb4e6283fb911f044af494b0c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2624241939&rft_id=info:pmid/34445340&rfr_iscdi=true |