Loading…
Forage Rotations Conserve Diversity of Arbuscular Mycorrhizal Fungi and Soil Fertility
In the Mediterranean, long-term impact of typical land uses on soil fertility have not been quantified yet on replicated mixed crop-livestock farms and considering the variability of soil texture. Here, we report the effects, after 15 years of practice, of two legume-winter cereal rotations, olive o...
Saved in:
Published in: | Frontiers in microbiology 2020-01, Vol.10, p.2969-2969 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Mediterranean, long-term impact of typical land uses on soil fertility have not been quantified yet on replicated mixed crop-livestock farms and considering the variability of soil texture. Here, we report the effects, after 15 years of practice, of two legume-winter cereal rotations, olive orchards and vineyards on microbiological and chemical indicators of soil fertility and the communities of arbuscular mycorrhizal fungi (AMF). We compare the changes among these four agricultural land-use types to woodland reference sites. Root colonization by AMF of English ryegrass (
L.), a grass that occurred under all land use types, was only half as heavy in biannual berseem clover (
L.)-winter cereal rotations than in 4-year alfalfa (
L.)-winter cereal rotations. In olive (
L.) orchards and vineyards (
L.), where weeds are controlled by frequent surface tillage, the AMF root colonization of ryegrass was again much lower than in the legume-cereal rotations and at the woodland reference sites. All the microbial parameters and soil organic carbon correlated most strongly with differences in occurrence and relative abundance (β-diversity) of AMF genera in soil. The soil pH and mineral nutrients in soil strongly correlated with differences in AMF root colonization and AMF genus richness (α-diversity) in soil. Diversity of AMF was much less affected by soil texture than land use, while the opposite was true for microbial and chemical soil fertility indicators. Land uses that guaranteed a continuous ground cover of herbaceous plants and that involved only infrequent tillage, such as multiyear alfalfa-winter cereal rotation, allowed members of the AMF genus
to persist and remain abundant. On the contrary, under land uses accompanied by frequent tillage and hence discontinuous presence of herbaceous plants, such as tilled olive orchard and vineyard, members of the genus
dominated. These results suggest that multiyear alfalfa-winter cereal rotation with active plant growth throughout the year is the least detrimental agricultural land use in soil carbon and AMF abundance and diversity, relative to the woodland reference. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2019.02969 |