Loading…

Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition

The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-02, Vol.13 (4), p.2496
Main Authors: Agayan, Sergey M., Dzeboev, Boris A., Bogoutdinov, Shamil R., Belov, Ivan O., Dzeranov, Boris V., Kamaev, Dmitriy A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53
cites cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53
container_end_page
container_issue 4
container_start_page 2496
container_title Applied sciences
container_volume 13
creator Agayan, Sergey M.
Dzeboev, Boris A.
Bogoutdinov, Shamil R.
Belov, Ivan O.
Dzeranov, Boris V.
Kamaev, Dmitriy A.
description The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.
doi_str_mv 10.3390/app13042496
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988160</galeid><doaj_id>oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d</doaj_id><sourcerecordid>A751988160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</originalsourceid><addsrcrecordid>eNpNUU1rHDEMHUoLCUlO_QMDOYZJ_e3xcbNN2kBKS2kvhWBkj7zrze544vEG-u_rZtsQ6SAh6T09pKZ5T8kl54Z8gGminAgmjHrTHDOiVccF1W9f5UfN2TxvSDVDeU_JcXP_EZ9wm6YdjqVNoS1rbBfbVcqxrHfRt1cwx_l_42a5-NV-wbJOQxtSbq8hl_XjHh6w-5bTWJEZof2OPq3GWGIaT5t3AbYznv2LJ83Pm-sfy8_d3ddPt8vFXec556WjDMDJQRKKXjgjanRucEIapoUSlAilgAXlA--BGYChDwa8YcpoblDyk-b2wDsk2Ngpxx3k3zZBtM-FlFe2So1-i9a4MOiABDFQEbjre-pkcCiZ4ITSoXKdH7imnB73OBe7Sfs8VvmWaW0kk9qoOnV5mFpBJY1jSCWDrz5gPVu9RYi1vtCSmrpBkQq4OAB8TvOcMbzIpMT-_Z999T_-B-s2jAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525796</pqid></control><display><type>article</type><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><source>Publicly Available Content (ProQuest)</source><creator>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</creator><creatorcontrib>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</creatorcontrib><description>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; California ; Clustering ; connectivity ; density ; DPS ; earthquake-prone areas ; Earthquakes ; FCAZ ; finite metric spaces ; Methods ; Pattern recognition ; Recognition ; Russia ; Seismic activity ; Seismicity</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2496</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</citedby><cites>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</cites><orcidid>0000-0003-3427-0634 ; 0000-0001-8110-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779525796/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779525796?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Agayan, Sergey M.</creatorcontrib><creatorcontrib>Dzeboev, Boris A.</creatorcontrib><creatorcontrib>Bogoutdinov, Shamil R.</creatorcontrib><creatorcontrib>Belov, Ivan O.</creatorcontrib><creatorcontrib>Dzeranov, Boris V.</creatorcontrib><creatorcontrib>Kamaev, Dmitriy A.</creatorcontrib><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><title>Applied sciences</title><description>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</description><subject>Algorithms</subject><subject>California</subject><subject>Clustering</subject><subject>connectivity</subject><subject>density</subject><subject>DPS</subject><subject>earthquake-prone areas</subject><subject>Earthquakes</subject><subject>FCAZ</subject><subject>finite metric spaces</subject><subject>Methods</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Russia</subject><subject>Seismic activity</subject><subject>Seismicity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rHDEMHUoLCUlO_QMDOYZJ_e3xcbNN2kBKS2kvhWBkj7zrze544vEG-u_rZtsQ6SAh6T09pKZ5T8kl54Z8gGminAgmjHrTHDOiVccF1W9f5UfN2TxvSDVDeU_JcXP_EZ9wm6YdjqVNoS1rbBfbVcqxrHfRt1cwx_l_42a5-NV-wbJOQxtSbq8hl_XjHh6w-5bTWJEZof2OPq3GWGIaT5t3AbYznv2LJ83Pm-sfy8_d3ddPt8vFXec556WjDMDJQRKKXjgjanRucEIapoUSlAilgAXlA--BGYChDwa8YcpoblDyk-b2wDsk2Ngpxx3k3zZBtM-FlFe2So1-i9a4MOiABDFQEbjre-pkcCiZ4ITSoXKdH7imnB73OBe7Sfs8VvmWaW0kk9qoOnV5mFpBJY1jSCWDrz5gPVu9RYi1vtCSmrpBkQq4OAB8TvOcMbzIpMT-_Z999T_-B-s2jAk</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Agayan, Sergey M.</creator><creator>Dzeboev, Boris A.</creator><creator>Bogoutdinov, Shamil R.</creator><creator>Belov, Ivan O.</creator><creator>Dzeranov, Boris V.</creator><creator>Kamaev, Dmitriy A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3427-0634</orcidid><orcidid>https://orcid.org/0000-0001-8110-2348</orcidid></search><sort><creationdate>20230201</creationdate><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><author>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>California</topic><topic>Clustering</topic><topic>connectivity</topic><topic>density</topic><topic>DPS</topic><topic>earthquake-prone areas</topic><topic>Earthquakes</topic><topic>FCAZ</topic><topic>finite metric spaces</topic><topic>Methods</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Russia</topic><topic>Seismic activity</topic><topic>Seismicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agayan, Sergey M.</creatorcontrib><creatorcontrib>Dzeboev, Boris A.</creatorcontrib><creatorcontrib>Bogoutdinov, Shamil R.</creatorcontrib><creatorcontrib>Belov, Ivan O.</creatorcontrib><creatorcontrib>Dzeranov, Boris V.</creatorcontrib><creatorcontrib>Kamaev, Dmitriy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agayan, Sergey M.</au><au>Dzeboev, Boris A.</au><au>Bogoutdinov, Shamil R.</au><au>Belov, Ivan O.</au><au>Dzeranov, Boris V.</au><au>Kamaev, Dmitriy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2496</spage><pages>2496-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042496</doi><orcidid>https://orcid.org/0000-0003-3427-0634</orcidid><orcidid>https://orcid.org/0000-0001-8110-2348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-02, Vol.13 (4), p.2496
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d
source Publicly Available Content (ProQuest)
subjects Algorithms
California
Clustering
connectivity
density
DPS
earthquake-prone areas
Earthquakes
FCAZ
finite metric spaces
Methods
Pattern recognition
Recognition
Russia
Seismic activity
Seismicity
title Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20Algorithmic%20Basis%20of%20the%20FCAZ%20Method%20for%20Earthquake-Prone%20Area%20Recognition&rft.jtitle=Applied%20sciences&rft.au=Agayan,%20Sergey%20M.&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2496&rft.pages=2496-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042496&rft_dat=%3Cgale_doaj_%3EA751988160%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779525796&rft_id=info:pmid/&rft_galeid=A751988160&rfr_iscdi=true