Loading…
Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition
The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of...
Saved in:
Published in: | Applied sciences 2023-02, Vol.13 (4), p.2496 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53 |
container_end_page | |
container_issue | 4 |
container_start_page | 2496 |
container_title | Applied sciences |
container_volume | 13 |
creator | Agayan, Sergey M. Dzeboev, Boris A. Bogoutdinov, Shamil R. Belov, Ivan O. Dzeranov, Boris V. Kamaev, Dmitriy A. |
description | The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas. |
doi_str_mv | 10.3390/app13042496 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751988160</galeid><doaj_id>oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d</doaj_id><sourcerecordid>A751988160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</originalsourceid><addsrcrecordid>eNpNUU1rHDEMHUoLCUlO_QMDOYZJ_e3xcbNN2kBKS2kvhWBkj7zrze544vEG-u_rZtsQ6SAh6T09pKZ5T8kl54Z8gGminAgmjHrTHDOiVccF1W9f5UfN2TxvSDVDeU_JcXP_EZ9wm6YdjqVNoS1rbBfbVcqxrHfRt1cwx_l_42a5-NV-wbJOQxtSbq8hl_XjHh6w-5bTWJEZof2OPq3GWGIaT5t3AbYznv2LJ83Pm-sfy8_d3ddPt8vFXec556WjDMDJQRKKXjgjanRucEIapoUSlAilgAXlA--BGYChDwa8YcpoblDyk-b2wDsk2Ngpxx3k3zZBtM-FlFe2So1-i9a4MOiABDFQEbjre-pkcCiZ4ITSoXKdH7imnB73OBe7Sfs8VvmWaW0kk9qoOnV5mFpBJY1jSCWDrz5gPVu9RYi1vtCSmrpBkQq4OAB8TvOcMbzIpMT-_Z999T_-B-s2jAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779525796</pqid></control><display><type>article</type><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><source>Publicly Available Content (ProQuest)</source><creator>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</creator><creatorcontrib>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</creatorcontrib><description>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13042496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; California ; Clustering ; connectivity ; density ; DPS ; earthquake-prone areas ; Earthquakes ; FCAZ ; finite metric spaces ; Methods ; Pattern recognition ; Recognition ; Russia ; Seismic activity ; Seismicity</subject><ispartof>Applied sciences, 2023-02, Vol.13 (4), p.2496</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</citedby><cites>FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</cites><orcidid>0000-0003-3427-0634 ; 0000-0001-8110-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779525796/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779525796?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Agayan, Sergey M.</creatorcontrib><creatorcontrib>Dzeboev, Boris A.</creatorcontrib><creatorcontrib>Bogoutdinov, Shamil R.</creatorcontrib><creatorcontrib>Belov, Ivan O.</creatorcontrib><creatorcontrib>Dzeranov, Boris V.</creatorcontrib><creatorcontrib>Kamaev, Dmitriy A.</creatorcontrib><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><title>Applied sciences</title><description>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</description><subject>Algorithms</subject><subject>California</subject><subject>Clustering</subject><subject>connectivity</subject><subject>density</subject><subject>DPS</subject><subject>earthquake-prone areas</subject><subject>Earthquakes</subject><subject>FCAZ</subject><subject>finite metric spaces</subject><subject>Methods</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Russia</subject><subject>Seismic activity</subject><subject>Seismicity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rHDEMHUoLCUlO_QMDOYZJ_e3xcbNN2kBKS2kvhWBkj7zrze544vEG-u_rZtsQ6SAh6T09pKZ5T8kl54Z8gGminAgmjHrTHDOiVccF1W9f5UfN2TxvSDVDeU_JcXP_EZ9wm6YdjqVNoS1rbBfbVcqxrHfRt1cwx_l_42a5-NV-wbJOQxtSbq8hl_XjHh6w-5bTWJEZof2OPq3GWGIaT5t3AbYznv2LJ83Pm-sfy8_d3ddPt8vFXec556WjDMDJQRKKXjgjanRucEIapoUSlAilgAXlA--BGYChDwa8YcpoblDyk-b2wDsk2Ngpxx3k3zZBtM-FlFe2So1-i9a4MOiABDFQEbjre-pkcCiZ4ITSoXKdH7imnB73OBe7Sfs8VvmWaW0kk9qoOnV5mFpBJY1jSCWDrz5gPVu9RYi1vtCSmrpBkQq4OAB8TvOcMbzIpMT-_Z999T_-B-s2jAk</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Agayan, Sergey M.</creator><creator>Dzeboev, Boris A.</creator><creator>Bogoutdinov, Shamil R.</creator><creator>Belov, Ivan O.</creator><creator>Dzeranov, Boris V.</creator><creator>Kamaev, Dmitriy A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3427-0634</orcidid><orcidid>https://orcid.org/0000-0001-8110-2348</orcidid></search><sort><creationdate>20230201</creationdate><title>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</title><author>Agayan, Sergey M. ; Dzeboev, Boris A. ; Bogoutdinov, Shamil R. ; Belov, Ivan O. ; Dzeranov, Boris V. ; Kamaev, Dmitriy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>California</topic><topic>Clustering</topic><topic>connectivity</topic><topic>density</topic><topic>DPS</topic><topic>earthquake-prone areas</topic><topic>Earthquakes</topic><topic>FCAZ</topic><topic>finite metric spaces</topic><topic>Methods</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Russia</topic><topic>Seismic activity</topic><topic>Seismicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agayan, Sergey M.</creatorcontrib><creatorcontrib>Dzeboev, Boris A.</creatorcontrib><creatorcontrib>Bogoutdinov, Shamil R.</creatorcontrib><creatorcontrib>Belov, Ivan O.</creatorcontrib><creatorcontrib>Dzeranov, Boris V.</creatorcontrib><creatorcontrib>Kamaev, Dmitriy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agayan, Sergey M.</au><au>Dzeboev, Boris A.</au><au>Bogoutdinov, Shamil R.</au><au>Belov, Ivan O.</au><au>Dzeranov, Boris V.</au><au>Kamaev, Dmitriy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition</atitle><jtitle>Applied sciences</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>2496</spage><pages>2496-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The present paper continues the series of publications by the authors devoted to solving the problem of recognition regions with potential high seismicity. It is aimed at the development of the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms included in the FCAZ in its original form and those developed in this paper is given. Using California as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones located at a fairly small distance from each other but having a close “internal” connection are being connected into single large, high-seismicity areas.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13042496</doi><orcidid>https://orcid.org/0000-0003-3427-0634</orcidid><orcidid>https://orcid.org/0000-0001-8110-2348</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-02, Vol.13 (4), p.2496 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9bfd7fe0eef14f3b881b5fbe5243011d |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms California Clustering connectivity density DPS earthquake-prone areas Earthquakes FCAZ finite metric spaces Methods Pattern recognition Recognition Russia Seismic activity Seismicity |
title | Development of the Algorithmic Basis of the FCAZ Method for Earthquake-Prone Area Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20Algorithmic%20Basis%20of%20the%20FCAZ%20Method%20for%20Earthquake-Prone%20Area%20Recognition&rft.jtitle=Applied%20sciences&rft.au=Agayan,%20Sergey%20M.&rft.date=2023-02-01&rft.volume=13&rft.issue=4&rft.spage=2496&rft.pages=2496-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13042496&rft_dat=%3Cgale_doaj_%3EA751988160%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-12aab5d501ec4b9401ebbdb4592746410466a2f6cf38a29aad8f9ac9269739e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779525796&rft_id=info:pmid/&rft_galeid=A751988160&rfr_iscdi=true |