Loading…
Chinese Named Entity Recognition Based on Multi-Level Representation Learning
Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining...
Saved in:
Published in: | Applied sciences 2024-10, Vol.14 (19), p.9083 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763 |
container_end_page | |
container_issue | 19 |
container_start_page | 9083 |
container_title | Applied sciences |
container_volume | 14 |
creator | Li, Weijun Ding, Jianping Liu, Shixia Liu, Xueyang Su, Yilei Wang, Ziyi |
description | Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models. |
doi_str_mv | 10.3390/app14199083 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813050663</galeid><doaj_id>oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528</doaj_id><sourcerecordid>A813050663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUU_-gYJH2ZpJdrPJUUvVQlUQPYdpPmpKm6zZVOi_N1oRZw7zmHnvzcBU1QWQMWOSXGPfQwNSEsEOqhNKOl6zBrrDf_i4Oh-GFSkhgQkgJ9Xj5N0HO9jRE26sGU1D9nk3erE6LoPPPobRLQ5lUMDjdp19Pbefdl0IfSqqkPGHM7eYgg_Ls-rI4Xqw57_1tHq7m75OHur58_1scjOvNZWQayqYtE3LAVjLjWyZpm3rKFIwC7SiIcy1dCF4B1AKSouagMYOKNcSO85Oq9ne10RcqT75DaadiujVTyOmpcKUvV5bJTWh0jgHnVg0TDfCGTANRyeYKVtE8brce_UpfmztkNUqblMo5ysGwHnDOZOFNd6zllhMfXAxJ9Qljd14HYN1vvRvBDDSkqIogqu9QKc4DMm6vzOBqO9_qX__Yl8OxYXS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116646639</pqid></control><display><type>article</type><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><source>Publicly Available Content (ProQuest)</source><creator>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</creator><creatorcontrib>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</creatorcontrib><description>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14199083</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>adaptive multi-head attention ; adversarial training ; Computational linguistics ; Datasets ; Deep learning ; Dictionaries ; Extended Long Short-Term Memory network ; GlobalPointer ; Graphs ; Labeling ; Language processing ; Natural language interfaces ; Semantics ; WoBERT</subject><ispartof>Applied sciences, 2024-10, Vol.14 (19), p.9083</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</cites><orcidid>0009-0008-6897-8415 ; 0000-0003-1744-7864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116646639/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116646639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Liu, Xueyang</creatorcontrib><creatorcontrib>Su, Yilei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><title>Applied sciences</title><description>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</description><subject>adaptive multi-head attention</subject><subject>adversarial training</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Extended Long Short-Term Memory network</subject><subject>GlobalPointer</subject><subject>Graphs</subject><subject>Labeling</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Semantics</subject><subject>WoBERT</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUU_-gYJH2ZpJdrPJUUvVQlUQPYdpPmpKm6zZVOi_N1oRZw7zmHnvzcBU1QWQMWOSXGPfQwNSEsEOqhNKOl6zBrrDf_i4Oh-GFSkhgQkgJ9Xj5N0HO9jRE26sGU1D9nk3erE6LoPPPobRLQ5lUMDjdp19Pbefdl0IfSqqkPGHM7eYgg_Ls-rI4Xqw57_1tHq7m75OHur58_1scjOvNZWQayqYtE3LAVjLjWyZpm3rKFIwC7SiIcy1dCF4B1AKSouagMYOKNcSO85Oq9ne10RcqT75DaadiujVTyOmpcKUvV5bJTWh0jgHnVg0TDfCGTANRyeYKVtE8brce_UpfmztkNUqblMo5ysGwHnDOZOFNd6zllhMfXAxJ9Qljd14HYN1vvRvBDDSkqIogqu9QKc4DMm6vzOBqO9_qX__Yl8OxYXS</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Weijun</creator><creator>Ding, Jianping</creator><creator>Liu, Shixia</creator><creator>Liu, Xueyang</creator><creator>Su, Yilei</creator><creator>Wang, Ziyi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-6897-8415</orcidid><orcidid>https://orcid.org/0000-0003-1744-7864</orcidid></search><sort><creationdate>20241001</creationdate><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><author>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive multi-head attention</topic><topic>adversarial training</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Extended Long Short-Term Memory network</topic><topic>GlobalPointer</topic><topic>Graphs</topic><topic>Labeling</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Semantics</topic><topic>WoBERT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Liu, Xueyang</creatorcontrib><creatorcontrib>Su, Yilei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weijun</au><au>Ding, Jianping</au><au>Liu, Shixia</au><au>Liu, Xueyang</au><au>Su, Yilei</au><au>Wang, Ziyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</atitle><jtitle>Applied sciences</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>19</issue><spage>9083</spage><pages>9083-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14199083</doi><orcidid>https://orcid.org/0009-0008-6897-8415</orcidid><orcidid>https://orcid.org/0000-0003-1744-7864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-10, Vol.14 (19), p.9083 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528 |
source | Publicly Available Content (ProQuest) |
subjects | adaptive multi-head attention adversarial training Computational linguistics Datasets Deep learning Dictionaries Extended Long Short-Term Memory network GlobalPointer Graphs Labeling Language processing Natural language interfaces Semantics WoBERT |
title | Chinese Named Entity Recognition Based on Multi-Level Representation Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Named%20Entity%20Recognition%20Based%20on%20Multi-Level%20Representation%20Learning&rft.jtitle=Applied%20sciences&rft.au=Li,%20Weijun&rft.date=2024-10-01&rft.volume=14&rft.issue=19&rft.spage=9083&rft.pages=9083-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14199083&rft_dat=%3Cgale_doaj_%3EA813050663%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116646639&rft_id=info:pmid/&rft_galeid=A813050663&rfr_iscdi=true |