Loading…

Chinese Named Entity Recognition Based on Multi-Level Representation Learning

Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2024-10, Vol.14 (19), p.9083
Main Authors: Li, Weijun, Ding, Jianping, Liu, Shixia, Liu, Xueyang, Su, Yilei, Wang, Ziyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763
container_end_page
container_issue 19
container_start_page 9083
container_title Applied sciences
container_volume 14
creator Li, Weijun
Ding, Jianping
Liu, Shixia
Liu, Xueyang
Su, Yilei
Wang, Ziyi
description Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.
doi_str_mv 10.3390/app14199083
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A813050663</galeid><doaj_id>oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528</doaj_id><sourcerecordid>A813050663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBUU_-gYJH2ZpJdrPJUUvVQlUQPYdpPmpKm6zZVOi_N1oRZw7zmHnvzcBU1QWQMWOSXGPfQwNSEsEOqhNKOl6zBrrDf_i4Oh-GFSkhgQkgJ9Xj5N0HO9jRE26sGU1D9nk3erE6LoPPPobRLQ5lUMDjdp19Pbefdl0IfSqqkPGHM7eYgg_Ls-rI4Xqw57_1tHq7m75OHur58_1scjOvNZWQayqYtE3LAVjLjWyZpm3rKFIwC7SiIcy1dCF4B1AKSouagMYOKNcSO85Oq9ne10RcqT75DaadiujVTyOmpcKUvV5bJTWh0jgHnVg0TDfCGTANRyeYKVtE8brce_UpfmztkNUqblMo5ysGwHnDOZOFNd6zllhMfXAxJ9Qljd14HYN1vvRvBDDSkqIogqu9QKc4DMm6vzOBqO9_qX__Yl8OxYXS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116646639</pqid></control><display><type>article</type><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><source>Publicly Available Content (ProQuest)</source><creator>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</creator><creatorcontrib>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</creatorcontrib><description>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14199083</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>adaptive multi-head attention ; adversarial training ; Computational linguistics ; Datasets ; Deep learning ; Dictionaries ; Extended Long Short-Term Memory network ; GlobalPointer ; Graphs ; Labeling ; Language processing ; Natural language interfaces ; Semantics ; WoBERT</subject><ispartof>Applied sciences, 2024-10, Vol.14 (19), p.9083</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</cites><orcidid>0009-0008-6897-8415 ; 0000-0003-1744-7864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3116646639/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3116646639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Liu, Xueyang</creatorcontrib><creatorcontrib>Su, Yilei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><title>Applied sciences</title><description>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</description><subject>adaptive multi-head attention</subject><subject>adversarial training</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Dictionaries</subject><subject>Extended Long Short-Term Memory network</subject><subject>GlobalPointer</subject><subject>Graphs</subject><subject>Labeling</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Semantics</subject><subject>WoBERT</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBUU_-gYJH2ZpJdrPJUUvVQlUQPYdpPmpKm6zZVOi_N1oRZw7zmHnvzcBU1QWQMWOSXGPfQwNSEsEOqhNKOl6zBrrDf_i4Oh-GFSkhgQkgJ9Xj5N0HO9jRE26sGU1D9nk3erE6LoPPPobRLQ5lUMDjdp19Pbefdl0IfSqqkPGHM7eYgg_Ls-rI4Xqw57_1tHq7m75OHur58_1scjOvNZWQayqYtE3LAVjLjWyZpm3rKFIwC7SiIcy1dCF4B1AKSouagMYOKNcSO85Oq9ne10RcqT75DaadiujVTyOmpcKUvV5bJTWh0jgHnVg0TDfCGTANRyeYKVtE8brce_UpfmztkNUqblMo5ysGwHnDOZOFNd6zllhMfXAxJ9Qljd14HYN1vvRvBDDSkqIogqu9QKc4DMm6vzOBqO9_qX__Yl8OxYXS</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Li, Weijun</creator><creator>Ding, Jianping</creator><creator>Liu, Shixia</creator><creator>Liu, Xueyang</creator><creator>Su, Yilei</creator><creator>Wang, Ziyi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-6897-8415</orcidid><orcidid>https://orcid.org/0000-0003-1744-7864</orcidid></search><sort><creationdate>20241001</creationdate><title>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</title><author>Li, Weijun ; Ding, Jianping ; Liu, Shixia ; Liu, Xueyang ; Su, Yilei ; Wang, Ziyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive multi-head attention</topic><topic>adversarial training</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Dictionaries</topic><topic>Extended Long Short-Term Memory network</topic><topic>GlobalPointer</topic><topic>Graphs</topic><topic>Labeling</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Semantics</topic><topic>WoBERT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Liu, Shixia</creatorcontrib><creatorcontrib>Liu, Xueyang</creatorcontrib><creatorcontrib>Su, Yilei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weijun</au><au>Ding, Jianping</au><au>Liu, Shixia</au><au>Liu, Xueyang</au><au>Su, Yilei</au><au>Wang, Ziyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chinese Named Entity Recognition Based on Multi-Level Representation Learning</atitle><jtitle>Applied sciences</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>19</issue><spage>9083</spage><pages>9083-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Named Entity Recognition (NER) is a crucial component of Natural Language Processing (NLP). When dealing with the high diversity and complexity of the Chinese language, existing Chinese NER models face challenges in addressing word sense ambiguity, capturing long-range dependencies, and maintaining robustness, which hinders the accuracy of entity recognition. To this end, a Chinese NER model based on multi-level representation learning is proposed. The model leverages a pre-trained word-based embedding to capture contextual information. A linear layer adjusts dimensions to fit an Extended Long Short-Term Memory (XLSTM) network, enabling the capture of long-range dependencies and contextual information, and providing deeper representations. An adaptive multi-head attention mechanism is proposed to enhance the ability to capture global dependencies and comprehend deep semantic context. Additionally, GlobalPointer with rotational position encoding integrates global information for entity category prediction. Projected Gradient Descent (PGD) is incorporated, introducing perturbations in the embedding layer of the pre-trained model to enhance stability in noisy environments. The proposed model achieves F1-scores of 96.89%, 74.89%, 72.19%, and 80.96% on the Resume, Weibo, CMeEE, and CLUENER2020 datasets, respectively, demonstrating improvements over baseline and comparison models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14199083</doi><orcidid>https://orcid.org/0009-0008-6897-8415</orcidid><orcidid>https://orcid.org/0000-0003-1744-7864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2024-10, Vol.14 (19), p.9083
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9c029dff178b43c48fd1d46af83df528
source Publicly Available Content (ProQuest)
subjects adaptive multi-head attention
adversarial training
Computational linguistics
Datasets
Deep learning
Dictionaries
Extended Long Short-Term Memory network
GlobalPointer
Graphs
Labeling
Language processing
Natural language interfaces
Semantics
WoBERT
title Chinese Named Entity Recognition Based on Multi-Level Representation Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chinese%20Named%20Entity%20Recognition%20Based%20on%20Multi-Level%20Representation%20Learning&rft.jtitle=Applied%20sciences&rft.au=Li,%20Weijun&rft.date=2024-10-01&rft.volume=14&rft.issue=19&rft.spage=9083&rft.pages=9083-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14199083&rft_dat=%3Cgale_doaj_%3EA813050663%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-2839e45611356d953c255f2a21dbae8403f52b867112b8a9eac01ca7126c9a763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3116646639&rft_id=info:pmid/&rft_galeid=A813050663&rfr_iscdi=true