Loading…
Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment
Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study w...
Saved in:
Published in: | Membranes (Basel) 2022-09, Vol.12 (9), p.887 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23 |
container_end_page | |
container_issue | 9 |
container_start_page | 887 |
container_title | Membranes (Basel) |
container_volume | 12 |
creator | He, Zhihai Wang, Kunpeng Liu, Yanling Zhang, Ting Wang, Xiaomao |
description | Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water. |
doi_str_mv | 10.3390/membranes12090887 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745884853</galeid><doaj_id>oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878</doaj_id><sourcerecordid>A745884853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</originalsourceid><addsrcrecordid>eNplUs1u1DAQjhCIVqUPwM0SFy5b7Dh2nAtSVSittKUSLeJojZ1J1ktiF8fbqs_BC9fZLRUFz2FGM9988-MpireMHnHe0A8jjiaCx4mVtKFK1S-K_ZLW9YLyWrz8y94rDqdpTfOTVEhOXxd7XDIuGir3i9-nYKKzkFzwJHRkGcKE5Cv40LkhxZ3_4k8pcufSipy5fkW-4RrtNnqFw2zdunRPDKY7RJ8J0ibCQC5jD95ZcgEpYSTgW3IFQ5pIFyL5FJ3_6XxPfsAcvI4IaUSf3hSvOhgmPHzUB8X308_XJ2eL5eWX85Pj5cIK2qQFVIY3yjAjS04bLkxnBLAKlBBCYVm1tTHcslpmT0trwxRUEiWUdWerriv5QXG-420DrPVNdCPEex3A6a0jxF5DTM4OqBvLjC1NWwqpKilbMCCbrJlR8-pV5vq447rZmBFbm8fI8z8jfR7xbqX7cKsbQZlkczPvHwli-LXBKenRTRaHIe89bCZd1kw2VckrkaHv_oGuwyb6vKotSghWlTPh0Q7VQx7A-S7kujZLi6OzwWP-YNTHdSWUqpTgOYHtEmwM0xSxe-qeUT2fnP7v5PgDzp7MVw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716551422</pqid></control><display><type>article</type><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</creator><creatorcontrib>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</creatorcontrib><description>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes12090887</identifier><identifier>PMID: 36135906</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Charge density ; Drinking water ; Fabrication ; Humic acid ; interfacial polymerization (IP) ; loose nanofiltration (LNF) ; Membranes ; Microscopy ; Molecular weight ; Nanofiltration ; Nanotechnology ; natural organic matter (NOM) ; non-solvent induced phase separation (NIPS) ; Organic matter ; Phase separation ; Piperazine ; Polyethersulfones ; Polyethylene glycol ; Purification ; Rejection ; rejection selectivity ; Reluctance ; Salts ; Selectivity ; Surface charge ; Water ; Water purification ; Water treatment ; Water treatment plants</subject><ispartof>Membranes (Basel), 2022-09, Vol.12 (9), p.887</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</citedby><cites>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</cites><orcidid>0000-0002-1087-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716551422/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716551422?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25742,27913,27914,37001,37002,44579,53780,53782,74885</link.rule.ids></links><search><creatorcontrib>He, Zhihai</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><title>Membranes (Basel)</title><description>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</description><subject>Charge density</subject><subject>Drinking water</subject><subject>Fabrication</subject><subject>Humic acid</subject><subject>interfacial polymerization (IP)</subject><subject>loose nanofiltration (LNF)</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular weight</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>natural organic matter (NOM)</subject><subject>non-solvent induced phase separation (NIPS)</subject><subject>Organic matter</subject><subject>Phase separation</subject><subject>Piperazine</subject><subject>Polyethersulfones</subject><subject>Polyethylene glycol</subject><subject>Purification</subject><subject>Rejection</subject><subject>rejection selectivity</subject><subject>Reluctance</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Surface charge</subject><subject>Water</subject><subject>Water purification</subject><subject>Water treatment</subject><subject>Water treatment plants</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUs1u1DAQjhCIVqUPwM0SFy5b7Dh2nAtSVSittKUSLeJojZ1J1ktiF8fbqs_BC9fZLRUFz2FGM9988-MpireMHnHe0A8jjiaCx4mVtKFK1S-K_ZLW9YLyWrz8y94rDqdpTfOTVEhOXxd7XDIuGir3i9-nYKKzkFzwJHRkGcKE5Cv40LkhxZ3_4k8pcufSipy5fkW-4RrtNnqFw2zdunRPDKY7RJ8J0ibCQC5jD95ZcgEpYSTgW3IFQ5pIFyL5FJ3_6XxPfsAcvI4IaUSf3hSvOhgmPHzUB8X308_XJ2eL5eWX85Pj5cIK2qQFVIY3yjAjS04bLkxnBLAKlBBCYVm1tTHcslpmT0trwxRUEiWUdWerriv5QXG-420DrPVNdCPEex3A6a0jxF5DTM4OqBvLjC1NWwqpKilbMCCbrJlR8-pV5vq447rZmBFbm8fI8z8jfR7xbqX7cKsbQZlkczPvHwli-LXBKenRTRaHIe89bCZd1kw2VckrkaHv_oGuwyb6vKotSghWlTPh0Q7VQx7A-S7kujZLi6OzwWP-YNTHdSWUqpTgOYHtEmwM0xSxe-qeUT2fnP7v5PgDzp7MVw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>He, Zhihai</creator><creator>Wang, Kunpeng</creator><creator>Liu, Yanling</creator><creator>Zhang, Ting</creator><creator>Wang, Xiaomao</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1087-6706</orcidid></search><sort><creationdate>20220901</creationdate><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><author>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge density</topic><topic>Drinking water</topic><topic>Fabrication</topic><topic>Humic acid</topic><topic>interfacial polymerization (IP)</topic><topic>loose nanofiltration (LNF)</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular weight</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>natural organic matter (NOM)</topic><topic>non-solvent induced phase separation (NIPS)</topic><topic>Organic matter</topic><topic>Phase separation</topic><topic>Piperazine</topic><topic>Polyethersulfones</topic><topic>Polyethylene glycol</topic><topic>Purification</topic><topic>Rejection</topic><topic>rejection selectivity</topic><topic>Reluctance</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Surface charge</topic><topic>Water</topic><topic>Water purification</topic><topic>Water treatment</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhihai</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhihai</au><au>Wang, Kunpeng</au><au>Liu, Yanling</au><au>Zhang, Ting</au><au>Wang, Xiaomao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</atitle><jtitle>Membranes (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>887</spage><pages>887-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36135906</pmid><doi>10.3390/membranes12090887</doi><orcidid>https://orcid.org/0000-0002-1087-6706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2022-09, Vol.12 (9), p.887 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878 |
source | Publicly Available Content Database; PubMed Central |
subjects | Charge density Drinking water Fabrication Humic acid interfacial polymerization (IP) loose nanofiltration (LNF) Membranes Microscopy Molecular weight Nanofiltration Nanotechnology natural organic matter (NOM) non-solvent induced phase separation (NIPS) Organic matter Phase separation Piperazine Polyethersulfones Polyethylene glycol Purification Rejection rejection selectivity Reluctance Salts Selectivity Surface charge Water Water purification Water treatment Water treatment plants |
title | Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Loose%20Nanofiltration%20Membranes%20with%20High%20Rejection%20Selectivity%20between%20Natural%20Organic%20Matter%20and%20Salts%20for%20Drinking%20Water%20Treatment&rft.jtitle=Membranes%20(Basel)&rft.au=He,%20Zhihai&rft.date=2022-09-01&rft.volume=12&rft.issue=9&rft.spage=887&rft.pages=887-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes12090887&rft_dat=%3Cgale_doaj_%3EA745884853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716551422&rft_id=info:pmid/36135906&rft_galeid=A745884853&rfr_iscdi=true |