Loading…

Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment

Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study w...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2022-09, Vol.12 (9), p.887
Main Authors: He, Zhihai, Wang, Kunpeng, Liu, Yanling, Zhang, Ting, Wang, Xiaomao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23
cites cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23
container_end_page
container_issue 9
container_start_page 887
container_title Membranes (Basel)
container_volume 12
creator He, Zhihai
Wang, Kunpeng
Liu, Yanling
Zhang, Ting
Wang, Xiaomao
description Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.
doi_str_mv 10.3390/membranes12090887
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745884853</galeid><doaj_id>oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878</doaj_id><sourcerecordid>A745884853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</originalsourceid><addsrcrecordid>eNplUs1u1DAQjhCIVqUPwM0SFy5b7Dh2nAtSVSittKUSLeJojZ1J1ktiF8fbqs_BC9fZLRUFz2FGM9988-MpireMHnHe0A8jjiaCx4mVtKFK1S-K_ZLW9YLyWrz8y94rDqdpTfOTVEhOXxd7XDIuGir3i9-nYKKzkFzwJHRkGcKE5Cv40LkhxZ3_4k8pcufSipy5fkW-4RrtNnqFw2zdunRPDKY7RJ8J0ibCQC5jD95ZcgEpYSTgW3IFQ5pIFyL5FJ3_6XxPfsAcvI4IaUSf3hSvOhgmPHzUB8X308_XJ2eL5eWX85Pj5cIK2qQFVIY3yjAjS04bLkxnBLAKlBBCYVm1tTHcslpmT0trwxRUEiWUdWerriv5QXG-420DrPVNdCPEex3A6a0jxF5DTM4OqBvLjC1NWwqpKilbMCCbrJlR8-pV5vq447rZmBFbm8fI8z8jfR7xbqX7cKsbQZlkczPvHwli-LXBKenRTRaHIe89bCZd1kw2VckrkaHv_oGuwyb6vKotSghWlTPh0Q7VQx7A-S7kujZLi6OzwWP-YNTHdSWUqpTgOYHtEmwM0xSxe-qeUT2fnP7v5PgDzp7MVw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716551422</pqid></control><display><type>article</type><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</creator><creatorcontrib>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</creatorcontrib><description>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes12090887</identifier><identifier>PMID: 36135906</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Charge density ; Drinking water ; Fabrication ; Humic acid ; interfacial polymerization (IP) ; loose nanofiltration (LNF) ; Membranes ; Microscopy ; Molecular weight ; Nanofiltration ; Nanotechnology ; natural organic matter (NOM) ; non-solvent induced phase separation (NIPS) ; Organic matter ; Phase separation ; Piperazine ; Polyethersulfones ; Polyethylene glycol ; Purification ; Rejection ; rejection selectivity ; Reluctance ; Salts ; Selectivity ; Surface charge ; Water ; Water purification ; Water treatment ; Water treatment plants</subject><ispartof>Membranes (Basel), 2022-09, Vol.12 (9), p.887</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</citedby><cites>FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</cites><orcidid>0000-0002-1087-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716551422/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716551422?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25742,27913,27914,37001,37002,44579,53780,53782,74885</link.rule.ids></links><search><creatorcontrib>He, Zhihai</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><title>Membranes (Basel)</title><description>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</description><subject>Charge density</subject><subject>Drinking water</subject><subject>Fabrication</subject><subject>Humic acid</subject><subject>interfacial polymerization (IP)</subject><subject>loose nanofiltration (LNF)</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular weight</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>natural organic matter (NOM)</subject><subject>non-solvent induced phase separation (NIPS)</subject><subject>Organic matter</subject><subject>Phase separation</subject><subject>Piperazine</subject><subject>Polyethersulfones</subject><subject>Polyethylene glycol</subject><subject>Purification</subject><subject>Rejection</subject><subject>rejection selectivity</subject><subject>Reluctance</subject><subject>Salts</subject><subject>Selectivity</subject><subject>Surface charge</subject><subject>Water</subject><subject>Water purification</subject><subject>Water treatment</subject><subject>Water treatment plants</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUs1u1DAQjhCIVqUPwM0SFy5b7Dh2nAtSVSittKUSLeJojZ1J1ktiF8fbqs_BC9fZLRUFz2FGM9988-MpireMHnHe0A8jjiaCx4mVtKFK1S-K_ZLW9YLyWrz8y94rDqdpTfOTVEhOXxd7XDIuGir3i9-nYKKzkFzwJHRkGcKE5Cv40LkhxZ3_4k8pcufSipy5fkW-4RrtNnqFw2zdunRPDKY7RJ8J0ibCQC5jD95ZcgEpYSTgW3IFQ5pIFyL5FJ3_6XxPfsAcvI4IaUSf3hSvOhgmPHzUB8X308_XJ2eL5eWX85Pj5cIK2qQFVIY3yjAjS04bLkxnBLAKlBBCYVm1tTHcslpmT0trwxRUEiWUdWerriv5QXG-420DrPVNdCPEex3A6a0jxF5DTM4OqBvLjC1NWwqpKilbMCCbrJlR8-pV5vq447rZmBFbm8fI8z8jfR7xbqX7cKsbQZlkczPvHwli-LXBKenRTRaHIe89bCZd1kw2VckrkaHv_oGuwyb6vKotSghWlTPh0Q7VQx7A-S7kujZLi6OzwWP-YNTHdSWUqpTgOYHtEmwM0xSxe-qeUT2fnP7v5PgDzp7MVw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>He, Zhihai</creator><creator>Wang, Kunpeng</creator><creator>Liu, Yanling</creator><creator>Zhang, Ting</creator><creator>Wang, Xiaomao</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1087-6706</orcidid></search><sort><creationdate>20220901</creationdate><title>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</title><author>He, Zhihai ; Wang, Kunpeng ; Liu, Yanling ; Zhang, Ting ; Wang, Xiaomao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge density</topic><topic>Drinking water</topic><topic>Fabrication</topic><topic>Humic acid</topic><topic>interfacial polymerization (IP)</topic><topic>loose nanofiltration (LNF)</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular weight</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>natural organic matter (NOM)</topic><topic>non-solvent induced phase separation (NIPS)</topic><topic>Organic matter</topic><topic>Phase separation</topic><topic>Piperazine</topic><topic>Polyethersulfones</topic><topic>Polyethylene glycol</topic><topic>Purification</topic><topic>Rejection</topic><topic>rejection selectivity</topic><topic>Reluctance</topic><topic>Salts</topic><topic>Selectivity</topic><topic>Surface charge</topic><topic>Water</topic><topic>Water purification</topic><topic>Water treatment</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Zhihai</creatorcontrib><creatorcontrib>Wang, Kunpeng</creatorcontrib><creatorcontrib>Liu, Yanling</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Xiaomao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Zhihai</au><au>Wang, Kunpeng</au><au>Liu, Yanling</au><au>Zhang, Ting</au><au>Wang, Xiaomao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment</atitle><jtitle>Membranes (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>887</spage><pages>887-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Loose nanofiltration (LNF) membranes with a molecular weight cut-off (MWCO) of about 1000 Da and high surface negative charge density have great application potential for drinking water treatment pursuing high rejection selectivity between natural organic matter (NOM) and mineral salts. This study was conducted to exploit the novel method coupling non-solvent induced phase separation (NIPS) and interfacial polymerization (IP) for the preparation of high-performance LNF membranes. A number of LNF membranes were synthesized by varying the polyethersulfone (PES) and piperazine (PIP) concentrations in the cast solution for the PES support layer preparation. Results showed that these two conditions could greatly affect the membrane water permeance, MWCO and surface charge. One LNF membrane, with a water permeance as high as 23.0 ± 1.8 L/m2/h/bar, when used for the filtration of conventional process-treated natural water, demonstrated a rejection of NOM higher than 70% and a low rejection of mineral salts at about 20%. Both the mineral salts/NOM selectivity and permselectivity were superior to the currently available LNF membranes as far as the authors know. This study demonstrated the great advantage of the NIPS–IP method for the fabrication of LNF membranes, particularly for the advanced treatment of drinking water.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36135906</pmid><doi>10.3390/membranes12090887</doi><orcidid>https://orcid.org/0000-0002-1087-6706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2022-09, Vol.12 (9), p.887
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9c1bc2bd2568466daba6966d1b808878
source Publicly Available Content Database; PubMed Central
subjects Charge density
Drinking water
Fabrication
Humic acid
interfacial polymerization (IP)
loose nanofiltration (LNF)
Membranes
Microscopy
Molecular weight
Nanofiltration
Nanotechnology
natural organic matter (NOM)
non-solvent induced phase separation (NIPS)
Organic matter
Phase separation
Piperazine
Polyethersulfones
Polyethylene glycol
Purification
Rejection
rejection selectivity
Reluctance
Salts
Selectivity
Surface charge
Water
Water purification
Water treatment
Water treatment plants
title Fabrication of Loose Nanofiltration Membranes with High Rejection Selectivity between Natural Organic Matter and Salts for Drinking Water Treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Loose%20Nanofiltration%20Membranes%20with%20High%20Rejection%20Selectivity%20between%20Natural%20Organic%20Matter%20and%20Salts%20for%20Drinking%20Water%20Treatment&rft.jtitle=Membranes%20(Basel)&rft.au=He,%20Zhihai&rft.date=2022-09-01&rft.volume=12&rft.issue=9&rft.spage=887&rft.pages=887-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes12090887&rft_dat=%3Cgale_doaj_%3EA745884853%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-a4b398b1b6230935bfb5a14a85558e24d7bb3c176a85d07b18a46e6a27fc4ff23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716551422&rft_id=info:pmid/36135906&rft_galeid=A745884853&rfr_iscdi=true