Loading…
Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative
This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional d...
Saved in:
Published in: | Arabian journal of mathematics 2024-08, Vol.13 (2), p.409-424 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-847881fbcab4a35bcdde855498944c4c5dcc838567d3bbbc24199de33ff6a7743 |
container_end_page | 424 |
container_issue | 2 |
container_start_page | 409 |
container_title | Arabian journal of mathematics |
container_volume | 13 |
creator | Singh, Harvindra Mittal, A. K. Balyan, L. K. |
description | This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional derivative matrix at CGL points, we use the Caputo fractional derivative formula. Further, the Chebyshev fractional derivative matrix is utilized to reduce the given problem in an algebraic system of equations. The numerical approach known as the Newton–Raphson is implemented to get the desired results for the system. Error analysis for the set of values of
ν
is done for various model examples of fractional Burgers equations, where
ν
represents the fractional order. The computed numerical results are in perfect agreement with the exact solutions. |
doi_str_mv | 10.1007/s40065-024-00465-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c1f0446f11d49f68b687f455a1d2268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c1f0446f11d49f68b687f455a1d2268</doaj_id><sourcerecordid>3093003891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-847881fbcab4a35bcdde855498944c4c5dcc838567d3bbbc24199de33ff6a7743</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhCMEEqjwBzhF4hxYZ-3EPkLFo1IlOMDZcvxAqdK4tZNK_fe4BBVOnDxafzMre7LsmsAtAajvIgWoWAElLQDoQZ1kFyURWDBk5PSoKZ5nVzGuAIAAwxrJRda_RTsaHzdWD0F1uepVt49tzJ0P-Xrshta0a9vH1qeL3AWlh0k-jOHThpjb7agOo7xR0Zo8ibnajIP_yxob2l2idvYyO3Oqi_bq55xlH0-P7_OXYvn6vJjfLwuNKIaC05pz4hqtGqqQNdoYyxmjggtKNdXMaM2Rs6o22DSNLikRwlhE5ypV1xRn2WLKNV6t5Ca0axX20qtWfg98-JQqDK3urBSaOKC0coQYKlzFm4rXjjKmiCnLiqesmylrE_x2tHGQKz-G9K4oEQQCIBckUeVE6eBjDNYdtxKQh5rkVJNMNcnvmiQkE06mmOA-_edv9D-uLyFNltM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093003891</pqid></control><display><type>article</type><title>Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Singh, Harvindra ; Mittal, A. K. ; Balyan, L. K.</creator><creatorcontrib>Singh, Harvindra ; Mittal, A. K. ; Balyan, L. K.</creatorcontrib><description>This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional derivative matrix at CGL points, we use the Caputo fractional derivative formula. Further, the Chebyshev fractional derivative matrix is utilized to reduce the given problem in an algebraic system of equations. The numerical approach known as the Newton–Raphson is implemented to get the desired results for the system. Error analysis for the set of values of
ν
is done for various model examples of fractional Burgers equations, where
ν
represents the fractional order. The computed numerical results are in perfect agreement with the exact solutions.</description><identifier>ISSN: 2193-5343</identifier><identifier>ISSN: 2193-5351</identifier><identifier>EISSN: 2193-5351</identifier><identifier>DOI: 10.1007/s40065-024-00465-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>35C11 ; 35G31 ; 35R11 ; 65M70 ; Burgers equation ; Chebyshev approximation ; Error analysis ; Exact solutions ; Finite volume method ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Partial differential equations ; Reynolds number</subject><ispartof>Arabian journal of mathematics, 2024-08, Vol.13 (2), p.409-424</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c339t-847881fbcab4a35bcdde855498944c4c5dcc838567d3bbbc24199de33ff6a7743</cites><orcidid>0000-0003-1695-2658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3093003891/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3093003891?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Singh, Harvindra</creatorcontrib><creatorcontrib>Mittal, A. K.</creatorcontrib><creatorcontrib>Balyan, L. K.</creatorcontrib><title>Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative</title><title>Arabian journal of mathematics</title><addtitle>Arab. J. Math</addtitle><description>This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional derivative matrix at CGL points, we use the Caputo fractional derivative formula. Further, the Chebyshev fractional derivative matrix is utilized to reduce the given problem in an algebraic system of equations. The numerical approach known as the Newton–Raphson is implemented to get the desired results for the system. Error analysis for the set of values of
ν
is done for various model examples of fractional Burgers equations, where
ν
represents the fractional order. The computed numerical results are in perfect agreement with the exact solutions.</description><subject>35C11</subject><subject>35G31</subject><subject>35R11</subject><subject>65M70</subject><subject>Burgers equation</subject><subject>Chebyshev approximation</subject><subject>Error analysis</subject><subject>Exact solutions</subject><subject>Finite volume method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><issn>2193-5343</issn><issn>2193-5351</issn><issn>2193-5351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtPwzAQhCMEEqjwBzhF4hxYZ-3EPkLFo1IlOMDZcvxAqdK4tZNK_fe4BBVOnDxafzMre7LsmsAtAajvIgWoWAElLQDoQZ1kFyURWDBk5PSoKZ5nVzGuAIAAwxrJRda_RTsaHzdWD0F1uepVt49tzJ0P-Xrshta0a9vH1qeL3AWlh0k-jOHThpjb7agOo7xR0Zo8ibnajIP_yxob2l2idvYyO3Oqi_bq55xlH0-P7_OXYvn6vJjfLwuNKIaC05pz4hqtGqqQNdoYyxmjggtKNdXMaM2Rs6o22DSNLikRwlhE5ypV1xRn2WLKNV6t5Ca0axX20qtWfg98-JQqDK3urBSaOKC0coQYKlzFm4rXjjKmiCnLiqesmylrE_x2tHGQKz-G9K4oEQQCIBckUeVE6eBjDNYdtxKQh5rkVJNMNcnvmiQkE06mmOA-_edv9D-uLyFNltM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Singh, Harvindra</creator><creator>Mittal, A. K.</creator><creator>Balyan, L. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1695-2658</orcidid></search><sort><creationdate>20240801</creationdate><title>Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative</title><author>Singh, Harvindra ; Mittal, A. K. ; Balyan, L. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-847881fbcab4a35bcdde855498944c4c5dcc838567d3bbbc24199de33ff6a7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>35C11</topic><topic>35G31</topic><topic>35R11</topic><topic>65M70</topic><topic>Burgers equation</topic><topic>Chebyshev approximation</topic><topic>Error analysis</topic><topic>Exact solutions</topic><topic>Finite volume method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><toplevel>online_resources</toplevel><creatorcontrib>Singh, Harvindra</creatorcontrib><creatorcontrib>Mittal, A. K.</creatorcontrib><creatorcontrib>Balyan, L. K.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Arabian journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Harvindra</au><au>Mittal, A. K.</au><au>Balyan, L. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative</atitle><jtitle>Arabian journal of mathematics</jtitle><stitle>Arab. J. Math</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>409</spage><epage>424</epage><pages>409-424</pages><issn>2193-5343</issn><issn>2193-5351</issn><eissn>2193-5351</eissn><abstract>This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional derivative matrix at CGL points, we use the Caputo fractional derivative formula. Further, the Chebyshev fractional derivative matrix is utilized to reduce the given problem in an algebraic system of equations. The numerical approach known as the Newton–Raphson is implemented to get the desired results for the system. Error analysis for the set of values of
ν
is done for various model examples of fractional Burgers equations, where
ν
represents the fractional order. The computed numerical results are in perfect agreement with the exact solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40065-024-00465-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1695-2658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-5343 |
ispartof | Arabian journal of mathematics, 2024-08, Vol.13 (2), p.409-424 |
issn | 2193-5343 2193-5351 2193-5351 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9c1f0446f11d49f68b687f455a1d2268 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | 35C11 35G31 35R11 65M70 Burgers equation Chebyshev approximation Error analysis Exact solutions Finite volume method Mathematics Mathematics and Statistics Nonlinear equations Partial differential equations Reynolds number |
title | Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudospectral%20analysis%20for%20multidimensional%20fractional%20Burgers%20equation%20based%20on%20Caputo%20fractional%20derivative&rft.jtitle=Arabian%20journal%20of%20mathematics&rft.au=Singh,%20Harvindra&rft.date=2024-08-01&rft.volume=13&rft.issue=2&rft.spage=409&rft.epage=424&rft.pages=409-424&rft.issn=2193-5343&rft.eissn=2193-5351&rft_id=info:doi/10.1007/s40065-024-00465-0&rft_dat=%3Cproquest_doaj_%3E3093003891%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-847881fbcab4a35bcdde855498944c4c5dcc838567d3bbbc24199de33ff6a7743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093003891&rft_id=info:pmid/&rfr_iscdi=true |