Loading…

Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury

An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a ke...

Full description

Saved in:
Bibliographic Details
Published in:Cell death & disease 2023-10, Vol.14 (10), p.663-663, Article 663
Main Authors: Xie, Wenjia, He, Qingyun, Zhang, Yan, Xu, Xinxin, Wen, Ping, Cao, Hongdi, Zhou, Yang, Luo, Jing, Yang, Junwei, Jiang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53
cites cdi_FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53
container_end_page 663
container_issue 10
container_start_page 663
container_title Cell death & disease
container_volume 14
creator Xie, Wenjia
He, Qingyun
Zhang, Yan
Xu, Xinxin
Wen, Ping
Cao, Hongdi
Zhou, Yang
Luo, Jing
Yang, Junwei
Jiang, Lei
description An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.
doi_str_mv 10.1038/s41419-023-06195-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c23e06ccd1844ceb74d54130b36a983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c23e06ccd1844ceb74d54130b36a983</doaj_id><sourcerecordid>2875852882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXgD3-iHNCqKJQqRUc4Gw59mTXS2IvdlJp--txNxW0HPDF1viZR_borarXlLyjhKn3mVNOu4YAa4iknWjunlWnQDhtuFLd80fnk-o85x0pizECQr6sTlirqGxJd1rpb4e03JoZ658-mIz1DdQJN8tYSrme_BztNgaXvBnrbZww5tlkn2sfauvzvmA-ND64xaKrjV2OIhfwUIjdkg6vqheDGTOeP-xn1Y_LT98vvjTXXz9fXXy8bqygam4kHySTIG03uK6nfS-NHMANZAABHEC1_aAoMkcApDCAVmAPremIUT11gp1VV6vXRbPT--Qnkw46Gq-PhZg22qTZ2xF1Z4EhkdY6qji32LfcCU4Z6Zk0nWLF9WF17Zd-QmcxzMmMT6RPb4Lf6k281ZQIWSZ-b3j7YEjx14J51pPPFsfRBIxL1uU_QglQCgr65h90F5cUyqyOFFAmVFsoWCmbYs4Jhz-voUTf50GvedAlD_qYB31XmtjalAscNpj-qv_T9RtxtLij</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875213587</pqid></control><display><type>article</type><title>Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central Free</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xie, Wenjia ; He, Qingyun ; Zhang, Yan ; Xu, Xinxin ; Wen, Ping ; Cao, Hongdi ; Zhou, Yang ; Luo, Jing ; Yang, Junwei ; Jiang, Lei</creator><creatorcontrib>Xie, Wenjia ; He, Qingyun ; Zhang, Yan ; Xu, Xinxin ; Wen, Ping ; Cao, Hongdi ; Zhou, Yang ; Luo, Jing ; Yang, Junwei ; Jiang, Lei</creatorcontrib><description>An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-023-06195-z</identifier><identifier>PMID: 37816709</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/2 ; 13/51 ; 13/89 ; 14/1 ; 631/80/82/23 ; 64/60 ; 692/699/1585/4 ; 82/58 ; 82/80 ; Antibodies ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell death ; Cell survival ; Cisplatin ; Dynamin ; Epithelial cells ; Ferroptosis ; Glycolysis ; Homeostasis ; Immunology ; Kidneys ; Kinases ; Life Sciences ; Mitochondria ; Myosin ; Necroptosis ; Phosphorylation ; Pyruvate kinase ; Pyruvic acid ; Staurosporine</subject><ispartof>Cell death &amp; disease, 2023-10, Vol.14 (10), p.663-663, Article 663</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53</citedby><cites>FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53</cites><orcidid>0000-0003-0453-4598 ; 0000-0002-7322-4502 ; 0000-0001-9008-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2875213587/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2875213587?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Xie, Wenjia</creatorcontrib><creatorcontrib>He, Qingyun</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Wen, Ping</creatorcontrib><creatorcontrib>Cao, Hongdi</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Yang, Junwei</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><title>Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><description>An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.</description><subject>13/106</subject><subject>13/2</subject><subject>13/51</subject><subject>13/89</subject><subject>14/1</subject><subject>631/80/82/23</subject><subject>64/60</subject><subject>692/699/1585/4</subject><subject>82/58</subject><subject>82/80</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell death</subject><subject>Cell survival</subject><subject>Cisplatin</subject><subject>Dynamin</subject><subject>Epithelial cells</subject><subject>Ferroptosis</subject><subject>Glycolysis</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>Kidneys</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Myosin</subject><subject>Necroptosis</subject><subject>Phosphorylation</subject><subject>Pyruvate kinase</subject><subject>Pyruvic acid</subject><subject>Staurosporine</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-AUiQuXgD3-iHNCqKJQqRUc4Gw59mTXS2IvdlJp--txNxW0HPDF1viZR_borarXlLyjhKn3mVNOu4YAa4iknWjunlWnQDhtuFLd80fnk-o85x0pizECQr6sTlirqGxJd1rpb4e03JoZ658-mIz1DdQJN8tYSrme_BztNgaXvBnrbZww5tlkn2sfauvzvmA-ND64xaKrjV2OIhfwUIjdkg6vqheDGTOeP-xn1Y_LT98vvjTXXz9fXXy8bqygam4kHySTIG03uK6nfS-NHMANZAABHEC1_aAoMkcApDCAVmAPremIUT11gp1VV6vXRbPT--Qnkw46Gq-PhZg22qTZ2xF1Z4EhkdY6qji32LfcCU4Z6Zk0nWLF9WF17Zd-QmcxzMmMT6RPb4Lf6k281ZQIWSZ-b3j7YEjx14J51pPPFsfRBIxL1uU_QglQCgr65h90F5cUyqyOFFAmVFsoWCmbYs4Jhz-voUTf50GvedAlD_qYB31XmtjalAscNpj-qv_T9RtxtLij</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Xie, Wenjia</creator><creator>He, Qingyun</creator><creator>Zhang, Yan</creator><creator>Xu, Xinxin</creator><creator>Wen, Ping</creator><creator>Cao, Hongdi</creator><creator>Zhou, Yang</creator><creator>Luo, Jing</creator><creator>Yang, Junwei</creator><creator>Jiang, Lei</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0453-4598</orcidid><orcidid>https://orcid.org/0000-0002-7322-4502</orcidid><orcidid>https://orcid.org/0000-0001-9008-5826</orcidid></search><sort><creationdate>20231010</creationdate><title>Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury</title><author>Xie, Wenjia ; He, Qingyun ; Zhang, Yan ; Xu, Xinxin ; Wen, Ping ; Cao, Hongdi ; Zhou, Yang ; Luo, Jing ; Yang, Junwei ; Jiang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/106</topic><topic>13/2</topic><topic>13/51</topic><topic>13/89</topic><topic>14/1</topic><topic>631/80/82/23</topic><topic>64/60</topic><topic>692/699/1585/4</topic><topic>82/58</topic><topic>82/80</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell death</topic><topic>Cell survival</topic><topic>Cisplatin</topic><topic>Dynamin</topic><topic>Epithelial cells</topic><topic>Ferroptosis</topic><topic>Glycolysis</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>Kidneys</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Myosin</topic><topic>Necroptosis</topic><topic>Phosphorylation</topic><topic>Pyruvate kinase</topic><topic>Pyruvic acid</topic><topic>Staurosporine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wenjia</creatorcontrib><creatorcontrib>He, Qingyun</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Xu, Xinxin</creatorcontrib><creatorcontrib>Wen, Ping</creatorcontrib><creatorcontrib>Cao, Hongdi</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Yang, Junwei</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wenjia</au><au>He, Qingyun</au><au>Zhang, Yan</au><au>Xu, Xinxin</au><au>Wen, Ping</au><au>Cao, Hongdi</au><au>Zhou, Yang</au><au>Luo, Jing</au><au>Yang, Junwei</au><au>Jiang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><date>2023-10-10</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>663</spage><epage>663</epage><pages>663-663</pages><artnum>663</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37816709</pmid><doi>10.1038/s41419-023-06195-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0453-4598</orcidid><orcidid>https://orcid.org/0000-0002-7322-4502</orcidid><orcidid>https://orcid.org/0000-0001-9008-5826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2023-10, Vol.14 (10), p.663-663, Article 663
issn 2041-4889
2041-4889
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9c23e06ccd1844ceb74d54130b36a983
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central Free; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/106
13/2
13/51
13/89
14/1
631/80/82/23
64/60
692/699/1585/4
82/58
82/80
Antibodies
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell death
Cell survival
Cisplatin
Dynamin
Epithelial cells
Ferroptosis
Glycolysis
Homeostasis
Immunology
Kidneys
Kinases
Life Sciences
Mitochondria
Myosin
Necroptosis
Phosphorylation
Pyruvate kinase
Pyruvic acid
Staurosporine
title Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyruvate%20kinase%20M2%20regulates%20mitochondrial%20homeostasis%20in%20cisplatin-induced%20acute%20kidney%20injury&rft.jtitle=Cell%20death%20&%20disease&rft.au=Xie,%20Wenjia&rft.date=2023-10-10&rft.volume=14&rft.issue=10&rft.spage=663&rft.epage=663&rft.pages=663-663&rft.artnum=663&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-023-06195-z&rft_dat=%3Cproquest_doaj_%3E2875852882%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-64f63626c9fd9b1bb6a6f2df0f25242287bf81e3d02265a2ec5eb27a90a8b1d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2875213587&rft_id=info:pmid/37816709&rfr_iscdi=true