Loading…

Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems

Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-11, Vol.14 (1), p.29524-21
Main Authors: Hai, Tao, Basem, Ali, Alizadeh, As’ad, Sharma, Kamal, jasim, Dheyaa J., Rajab, Husam, Mabrouk, Abdelkader, Kolsi, Lioua, Rajhi, Wajdi, Maleki, Hamid, Sawaran Singh, Narinderjit Singh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553
container_end_page 21
container_issue 1
container_start_page 29524
container_title Scientific reports
container_volume 14
creator Hai, Tao
Basem, Ali
Alizadeh, As’ad
Sharma, Kamal
jasim, Dheyaa J.
Rajab, Husam
Mabrouk, Abdelkader
Kolsi, Lioua
Rajhi, Wajdi
Maleki, Hamid
Sawaran Singh, Narinderjit Singh
description Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.
doi_str_mv 10.1038/s41598-024-81044-3
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e</doaj_id><sourcerecordid>3133733844</sourcerecordid><originalsourceid>FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</originalsourceid><addsrcrecordid>eNpdkstuFDEQRVsIRKIhP8ACWWLDIk386tcKoSjASEGwCIidVW1XTzzptgfbHRQ-jm_D8wASvCnb9-hWqXSL4jmjrxkV7VmUrOraknJZtoxKWYpHxTGnsiq54PzxvftRcRLjmuZT8U6y7mlxJLo6q7w5Ln4tXcJVgGTdikBIdrDawkgczmFX0g8fbuIpmeYx2dL3a9TJ3iKZMMF1hmxMVhO_SXayP7ONd6cEnDnwOtiEwQIxqG3MYjnBzbbV4AOx0yb42-3r4zd0WPYQ0ZAMgfPDOFsTCWw2o9XQj0isI5-_nl2R6EcIJN7FhFN8VjwZYIx4cqiL4su7i6vzD-Xlp_fL87eXpRGiSmU1UNlw0RrWaVMPpjfccIk105ILhL4DDdj0wDWtBuQ1cFMB9A3nXS1MVYlFsdz7Gg9rtQl2gnCnPFi1-_BhpbbL0yOqTjc1Mk5bLTspmehaTZnumYFWNoJh9nqz99rM_YRGo0t51Q9MHyrOXquVv1WM1VSIPPGieHVwCP77jDGpyUaN4wgO_RyVYEI0QrRSZvTlf-jaz8HlXe2oWkjZ1Jl6cX-kv7P8yUkGxB6IWXIrDP9sGFXbQKp9IFUOpNoFUgnxG39d1nI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133634476</pqid></control><display><type>article</type><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</creator><creatorcontrib>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</creatorcontrib><description>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81044-3</identifier><identifier>PMID: 39604527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/4077 ; Artificial neural network ; Decision making ; Humanities and Social Sciences ; Multi-criteria decision-making ; Multi-objective optimization ; multidisciplinary ; Multiple criteria decision making ; MXene-based nanofluid ; Neural networks ; Optimization ; Photovoltaics ; PV/T system ; Science ; Science (multidisciplinary) ; Solar energy ; Specific heat ; Thermal conductivity</subject><ispartof>Scientific reports, 2024-11, Vol.14 (1), p.29524-21</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133634476/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133634476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hai, Tao</creatorcontrib><creatorcontrib>Basem, Ali</creatorcontrib><creatorcontrib>Alizadeh, As’ad</creatorcontrib><creatorcontrib>Sharma, Kamal</creatorcontrib><creatorcontrib>jasim, Dheyaa J.</creatorcontrib><creatorcontrib>Rajab, Husam</creatorcontrib><creatorcontrib>Mabrouk, Abdelkader</creatorcontrib><creatorcontrib>Kolsi, Lioua</creatorcontrib><creatorcontrib>Rajhi, Wajdi</creatorcontrib><creatorcontrib>Maleki, Hamid</creatorcontrib><creatorcontrib>Sawaran Singh, Narinderjit Singh</creatorcontrib><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</description><subject>639/166</subject><subject>639/301</subject><subject>639/4077</subject><subject>Artificial neural network</subject><subject>Decision making</subject><subject>Humanities and Social Sciences</subject><subject>Multi-criteria decision-making</subject><subject>Multi-objective optimization</subject><subject>multidisciplinary</subject><subject>Multiple criteria decision making</subject><subject>MXene-based nanofluid</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Photovoltaics</subject><subject>PV/T system</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar energy</subject><subject>Specific heat</subject><subject>Thermal conductivity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuFDEQRVsIRKIhP8ACWWLDIk386tcKoSjASEGwCIidVW1XTzzptgfbHRQ-jm_D8wASvCnb9-hWqXSL4jmjrxkV7VmUrOraknJZtoxKWYpHxTGnsiq54PzxvftRcRLjmuZT8U6y7mlxJLo6q7w5Ln4tXcJVgGTdikBIdrDawkgczmFX0g8fbuIpmeYx2dL3a9TJ3iKZMMF1hmxMVhO_SXayP7ONd6cEnDnwOtiEwQIxqG3MYjnBzbbV4AOx0yb42-3r4zd0WPYQ0ZAMgfPDOFsTCWw2o9XQj0isI5-_nl2R6EcIJN7FhFN8VjwZYIx4cqiL4su7i6vzD-Xlp_fL87eXpRGiSmU1UNlw0RrWaVMPpjfccIk105ILhL4DDdj0wDWtBuQ1cFMB9A3nXS1MVYlFsdz7Gg9rtQl2gnCnPFi1-_BhpbbL0yOqTjc1Mk5bLTspmehaTZnumYFWNoJh9nqz99rM_YRGo0t51Q9MHyrOXquVv1WM1VSIPPGieHVwCP77jDGpyUaN4wgO_RyVYEI0QrRSZvTlf-jaz8HlXe2oWkjZ1Jl6cX-kv7P8yUkGxB6IWXIrDP9sGFXbQKp9IFUOpNoFUgnxG39d1nI</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Hai, Tao</creator><creator>Basem, Ali</creator><creator>Alizadeh, As’ad</creator><creator>Sharma, Kamal</creator><creator>jasim, Dheyaa J.</creator><creator>Rajab, Husam</creator><creator>Mabrouk, Abdelkader</creator><creator>Kolsi, Lioua</creator><creator>Rajhi, Wajdi</creator><creator>Maleki, Hamid</creator><creator>Sawaran Singh, Narinderjit Singh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241127</creationdate><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><author>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/4077</topic><topic>Artificial neural network</topic><topic>Decision making</topic><topic>Humanities and Social Sciences</topic><topic>Multi-criteria decision-making</topic><topic>Multi-objective optimization</topic><topic>multidisciplinary</topic><topic>Multiple criteria decision making</topic><topic>MXene-based nanofluid</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Photovoltaics</topic><topic>PV/T system</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar energy</topic><topic>Specific heat</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Tao</creatorcontrib><creatorcontrib>Basem, Ali</creatorcontrib><creatorcontrib>Alizadeh, As’ad</creatorcontrib><creatorcontrib>Sharma, Kamal</creatorcontrib><creatorcontrib>jasim, Dheyaa J.</creatorcontrib><creatorcontrib>Rajab, Husam</creatorcontrib><creatorcontrib>Mabrouk, Abdelkader</creatorcontrib><creatorcontrib>Kolsi, Lioua</creatorcontrib><creatorcontrib>Rajhi, Wajdi</creatorcontrib><creatorcontrib>Maleki, Hamid</creatorcontrib><creatorcontrib>Sawaran Singh, Narinderjit Singh</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Tao</au><au>Basem, Ali</au><au>Alizadeh, As’ad</au><au>Sharma, Kamal</au><au>jasim, Dheyaa J.</au><au>Rajab, Husam</au><au>Mabrouk, Abdelkader</au><au>Kolsi, Lioua</au><au>Rajhi, Wajdi</au><au>Maleki, Hamid</au><au>Sawaran Singh, Narinderjit Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>29524</spage><epage>21</epage><pages>29524-21</pages><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39604527</pmid><doi>10.1038/s41598-024-81044-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-11, Vol.14 (1), p.29524-21
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166
639/301
639/4077
Artificial neural network
Decision making
Humanities and Social Sciences
Multi-criteria decision-making
Multi-objective optimization
multidisciplinary
Multiple criteria decision making
MXene-based nanofluid
Neural networks
Optimization
Photovoltaics
PV/T system
Science
Science (multidisciplinary)
Solar energy
Specific heat
Thermal conductivity
title Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20artificial%20neural%20networks,%20multi-objective%20metaheuristic%20optimization,%20and%20multi-criteria%20decision-making%20for%20improving%20MXene-based%20ionanofluids%20applicable%20in%20PV/T%20solar%20systems&rft.jtitle=Scientific%20reports&rft.au=Hai,%20Tao&rft.date=2024-11-27&rft.volume=14&rft.issue=1&rft.spage=29524&rft.epage=21&rft.pages=29524-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81044-3&rft_dat=%3Cproquest_doaj_%3E3133733844%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133634476&rft_id=info:pmid/39604527&rfr_iscdi=true