Loading…
Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems
Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass...
Saved in:
Published in: | Scientific reports 2024-11, Vol.14 (1), p.29524-21 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553 |
container_end_page | 21 |
container_issue | 1 |
container_start_page | 29524 |
container_title | Scientific reports |
container_volume | 14 |
creator | Hai, Tao Basem, Ali Alizadeh, As’ad Sharma, Kamal jasim, Dheyaa J. Rajab, Husam Mabrouk, Abdelkader Kolsi, Lioua Rajhi, Wajdi Maleki, Hamid Sawaran Singh, Narinderjit Singh |
description | Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive. |
doi_str_mv | 10.1038/s41598-024-81044-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e</doaj_id><sourcerecordid>3133733844</sourcerecordid><originalsourceid>FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</originalsourceid><addsrcrecordid>eNpdkstuFDEQRVsIRKIhP8ACWWLDIk386tcKoSjASEGwCIidVW1XTzzptgfbHRQ-jm_D8wASvCnb9-hWqXSL4jmjrxkV7VmUrOraknJZtoxKWYpHxTGnsiq54PzxvftRcRLjmuZT8U6y7mlxJLo6q7w5Ln4tXcJVgGTdikBIdrDawkgczmFX0g8fbuIpmeYx2dL3a9TJ3iKZMMF1hmxMVhO_SXayP7ONd6cEnDnwOtiEwQIxqG3MYjnBzbbV4AOx0yb42-3r4zd0WPYQ0ZAMgfPDOFsTCWw2o9XQj0isI5-_nl2R6EcIJN7FhFN8VjwZYIx4cqiL4su7i6vzD-Xlp_fL87eXpRGiSmU1UNlw0RrWaVMPpjfccIk105ILhL4DDdj0wDWtBuQ1cFMB9A3nXS1MVYlFsdz7Gg9rtQl2gnCnPFi1-_BhpbbL0yOqTjc1Mk5bLTspmehaTZnumYFWNoJh9nqz99rM_YRGo0t51Q9MHyrOXquVv1WM1VSIPPGieHVwCP77jDGpyUaN4wgO_RyVYEI0QrRSZvTlf-jaz8HlXe2oWkjZ1Jl6cX-kv7P8yUkGxB6IWXIrDP9sGFXbQKp9IFUOpNoFUgnxG39d1nI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133634476</pqid></control><display><type>article</type><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</creator><creatorcontrib>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</creatorcontrib><description>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-81044-3</identifier><identifier>PMID: 39604527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/301 ; 639/4077 ; Artificial neural network ; Decision making ; Humanities and Social Sciences ; Multi-criteria decision-making ; Multi-objective optimization ; multidisciplinary ; Multiple criteria decision making ; MXene-based nanofluid ; Neural networks ; Optimization ; Photovoltaics ; PV/T system ; Science ; Science (multidisciplinary) ; Solar energy ; Specific heat ; Thermal conductivity</subject><ispartof>Scientific reports, 2024-11, Vol.14 (1), p.29524-21</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133634476/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133634476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hai, Tao</creatorcontrib><creatorcontrib>Basem, Ali</creatorcontrib><creatorcontrib>Alizadeh, As’ad</creatorcontrib><creatorcontrib>Sharma, Kamal</creatorcontrib><creatorcontrib>jasim, Dheyaa J.</creatorcontrib><creatorcontrib>Rajab, Husam</creatorcontrib><creatorcontrib>Mabrouk, Abdelkader</creatorcontrib><creatorcontrib>Kolsi, Lioua</creatorcontrib><creatorcontrib>Rajhi, Wajdi</creatorcontrib><creatorcontrib>Maleki, Hamid</creatorcontrib><creatorcontrib>Sawaran Singh, Narinderjit Singh</creatorcontrib><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</description><subject>639/166</subject><subject>639/301</subject><subject>639/4077</subject><subject>Artificial neural network</subject><subject>Decision making</subject><subject>Humanities and Social Sciences</subject><subject>Multi-criteria decision-making</subject><subject>Multi-objective optimization</subject><subject>multidisciplinary</subject><subject>Multiple criteria decision making</subject><subject>MXene-based nanofluid</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Photovoltaics</subject><subject>PV/T system</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar energy</subject><subject>Specific heat</subject><subject>Thermal conductivity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuFDEQRVsIRKIhP8ACWWLDIk386tcKoSjASEGwCIidVW1XTzzptgfbHRQ-jm_D8wASvCnb9-hWqXSL4jmjrxkV7VmUrOraknJZtoxKWYpHxTGnsiq54PzxvftRcRLjmuZT8U6y7mlxJLo6q7w5Ln4tXcJVgGTdikBIdrDawkgczmFX0g8fbuIpmeYx2dL3a9TJ3iKZMMF1hmxMVhO_SXayP7ONd6cEnDnwOtiEwQIxqG3MYjnBzbbV4AOx0yb42-3r4zd0WPYQ0ZAMgfPDOFsTCWw2o9XQj0isI5-_nl2R6EcIJN7FhFN8VjwZYIx4cqiL4su7i6vzD-Xlp_fL87eXpRGiSmU1UNlw0RrWaVMPpjfccIk105ILhL4DDdj0wDWtBuQ1cFMB9A3nXS1MVYlFsdz7Gg9rtQl2gnCnPFi1-_BhpbbL0yOqTjc1Mk5bLTspmehaTZnumYFWNoJh9nqz99rM_YRGo0t51Q9MHyrOXquVv1WM1VSIPPGieHVwCP77jDGpyUaN4wgO_RyVYEI0QrRSZvTlf-jaz8HlXe2oWkjZ1Jl6cX-kv7P8yUkGxB6IWXIrDP9sGFXbQKp9IFUOpNoFUgnxG39d1nI</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Hai, Tao</creator><creator>Basem, Ali</creator><creator>Alizadeh, As’ad</creator><creator>Sharma, Kamal</creator><creator>jasim, Dheyaa J.</creator><creator>Rajab, Husam</creator><creator>Mabrouk, Abdelkader</creator><creator>Kolsi, Lioua</creator><creator>Rajhi, Wajdi</creator><creator>Maleki, Hamid</creator><creator>Sawaran Singh, Narinderjit Singh</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241127</creationdate><title>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</title><author>Hai, Tao ; Basem, Ali ; Alizadeh, As’ad ; Sharma, Kamal ; jasim, Dheyaa J. ; Rajab, Husam ; Mabrouk, Abdelkader ; Kolsi, Lioua ; Rajhi, Wajdi ; Maleki, Hamid ; Sawaran Singh, Narinderjit Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/166</topic><topic>639/301</topic><topic>639/4077</topic><topic>Artificial neural network</topic><topic>Decision making</topic><topic>Humanities and Social Sciences</topic><topic>Multi-criteria decision-making</topic><topic>Multi-objective optimization</topic><topic>multidisciplinary</topic><topic>Multiple criteria decision making</topic><topic>MXene-based nanofluid</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Photovoltaics</topic><topic>PV/T system</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar energy</topic><topic>Specific heat</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hai, Tao</creatorcontrib><creatorcontrib>Basem, Ali</creatorcontrib><creatorcontrib>Alizadeh, As’ad</creatorcontrib><creatorcontrib>Sharma, Kamal</creatorcontrib><creatorcontrib>jasim, Dheyaa J.</creatorcontrib><creatorcontrib>Rajab, Husam</creatorcontrib><creatorcontrib>Mabrouk, Abdelkader</creatorcontrib><creatorcontrib>Kolsi, Lioua</creatorcontrib><creatorcontrib>Rajhi, Wajdi</creatorcontrib><creatorcontrib>Maleki, Hamid</creatorcontrib><creatorcontrib>Sawaran Singh, Narinderjit Singh</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hai, Tao</au><au>Basem, Ali</au><au>Alizadeh, As’ad</au><au>Sharma, Kamal</au><au>jasim, Dheyaa J.</au><au>Rajab, Husam</au><au>Mabrouk, Abdelkader</au><au>Kolsi, Lioua</au><au>Rajhi, Wajdi</au><au>Maleki, Hamid</au><au>Sawaran Singh, Narinderjit Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>29524</spage><epage>21</epage><pages>29524-21</pages><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimization of thermophysical properties (TPPs) of MXene-based nanofluids is essential to increase the performance of hybrid solar photovoltaic and thermal (PV/T) systems. This study proposes a hybrid approach to optimize the TPPs of MXene-based Ionanofluids. The input variables are the MXene mass fraction (MF) and temperature. The optimization objectives include three TPPs: specific heat capacity (SHC), dynamic viscosity (DV), and thermal conductivity (TC). In the proposed hybrid approach, the powerful group method of data handling (GMDH)-type ANN technique is used to model TPPs in terms of input variables. The obtained models are integrated into the multi-objective particle swarm optimization (MOPSO) and multi-objective thermal exchange optimization (MOTEO) algorithms, forming a three-objective optimization problem. In the final step, the TOPSIS technique, one of the well-known multi-criteria decision-making (MCDM) approaches, is employed to identify the desirable Pareto points. Modeling results showed that the developed models for TC, DV, and SHC demonstrate a strong performance by R-values of 0.9984, 0.9985, and 0.9987, respectively. The outputs of MOPSO revealed that the Pareto points dispersed a broad range of MXene MFs (0-0.4%). However, the temperature of these optimal points was found to be constrained within a narrow range near the maximum value (75 °C). In scenarios where TC precedes other objectives, the TOPSIS method recommended utilizing an MF of over 0.2%. Alternatively, when DV holds greater importance, decision-makers can opt for an MF ranging from 0.15 to 0.17%. Also, when SHC becomes the primary concern, TOPSIS advised utilizing the base fluid without any MXene additive.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39604527</pmid><doi>10.1038/s41598-024-81044-3</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-11, Vol.14 (1), p.29524-21 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9c76e1208c49441398c01cb1da84731e |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166 639/301 639/4077 Artificial neural network Decision making Humanities and Social Sciences Multi-criteria decision-making Multi-objective optimization multidisciplinary Multiple criteria decision making MXene-based nanofluid Neural networks Optimization Photovoltaics PV/T system Science Science (multidisciplinary) Solar energy Specific heat Thermal conductivity |
title | Integrating artificial neural networks, multi-objective metaheuristic optimization, and multi-criteria decision-making for improving MXene-based ionanofluids applicable in PV/T solar systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A26%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20artificial%20neural%20networks,%20multi-objective%20metaheuristic%20optimization,%20and%20multi-criteria%20decision-making%20for%20improving%20MXene-based%20ionanofluids%20applicable%20in%20PV/T%20solar%20systems&rft.jtitle=Scientific%20reports&rft.au=Hai,%20Tao&rft.date=2024-11-27&rft.volume=14&rft.issue=1&rft.spage=29524&rft.epage=21&rft.pages=29524-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-81044-3&rft_dat=%3Cproquest_doaj_%3E3133733844%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d335t-5f047238d19cd6fdbd2d24e61c423eab9acae7ba2c05fe26a2d5aab722963d553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133634476&rft_id=info:pmid/39604527&rfr_iscdi=true |