Loading…
Tunable rectification in a molecular heterojunction with two-dimensional semiconductors
Until now, a specifically designed functional molecular species has been recognized as an absolute necessity for realizing the diode’s behavior in molecular electronic junctions. Here, we suggest a facile approach for the implementation of a tailored diode in a molecular junction based on non-functi...
Saved in:
Published in: | Nature communications 2020-03, Vol.11 (1), p.1412-1412, Article 1412 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Until now, a specifically designed functional molecular species has been recognized as an absolute necessity for realizing the diode’s behavior in molecular electronic junctions. Here, we suggest a facile approach for the implementation of a tailored diode in a molecular junction based on non-functionalized alkyl and conjugated molecular monolayers. A two-dimensional semiconductor (MoS
2
and WSe
2
) is used as a rectifying designer at the alkyl or conjugated molecule/Au interface. From the adjustment of band alignment at molecules/two-dimensional semiconductor interface that can activate different transport pathways depending on the voltage polarity, the rectifying characteristics can be implemented and controlled. The rectification ratio could be widely tuned from 1.24 to 1.83 × 10
4
by changing the molecular species and type and the number of layers of the two-dimensional semiconductors in the heterostructure molecular junction. Our work sets a design rule for implementing tailored-diode function in a molecular heterojunction structure with non-functionalized molecular systems.
Molecular electronics holds promise for device miniaturization yet can only be realized by choosing specially designed molecular species to date. Here, Shin et al. show tunable rectifying characteristics in a molecular heterojunction with non-functionalized molecules and two-dimensional semiconductors. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-15144-9 |