Loading…

Experimental-Numerical Assessment of Mechanical Behavior of Laboratory-Made Steel and NiTi Shape Memory Alloy Wire Ropes

The mechanical behaviors of laboratory-fabricated steel and superelastic shape memory alloy (SMA) wire ropes are assessed in this study through a comprehensive approach encompassing both experimental investigations and finite element (FE) numerical simulations. The assessment of steel wire ropes inv...

Full description

Saved in:
Bibliographic Details
Published in:Buildings (Basel) 2024-06, Vol.14 (6), p.1567
Main Authors: Narjabadifam, Peyman, Fazlalipour, Neda, Mollaei, Somayeh, Momeni, Mohammad, Watandoust, Ali Saman, Chavoshi, Mahdi, Babaeian Amini, Alireza, Karazmay, Farshad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical behaviors of laboratory-fabricated steel and superelastic shape memory alloy (SMA) wire ropes are assessed in this study through a comprehensive approach encompassing both experimental investigations and finite element (FE) numerical simulations. The assessment of steel wire ropes involves experimental scrutiny under sinusoidal cyclic loading and natural earthquake loading conditions. In parallel, SMA wire ropes’ behaviors are analyzed utilizing FE simulations employing the widely acknowledged ABAQUS software version 2020. The validation of all numerical simulations is undertaken against the experimentally observed behaviors. Moreover, full-scale steel wire ropes are subjected to shaking table tests to validate the simulations, facilitating a comparative analysis between the mechanical responses of SMA and steel wire ropes. The findings demonstrate that SMA wire ropes exhibit superelastic behavior akin to SMA wires, with marginal variations in overall response observed across distinct configurations, akin to steel wire ropes. Furthermore, augmenting the helix angle of SMA wire ropes results in reduced stress and increased strain when exposed to the El Centro earthquake scenario. Nevertheless, the mechanical response of SMA wire ropes closely mirrors that of a single wire.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings14061567