Loading…

Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive

Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-05, Vol.13 (9), p.1547
Main Authors: Yan, Xiaoying, Tong, Yunwei, Liu, Yingjie, Li, Xinyu, Qin, Zhenbo, Wu, Zhong, Hu, Wenbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003
cites cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003
container_end_page
container_issue 9
container_start_page 1547
container_title Nanomaterials (Basel, Switzerland)
container_volume 13
creator Yan, Xiaoying
Tong, Yunwei
Liu, Yingjie
Li, Xinyu
Qin, Zhenbo
Wu, Zhong
Hu, Wenbin
description Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO electrolyte with 2 g·L Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm , 5 mAh·cm ). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO full battery is up to 88.6% after 1000 cycles.
doi_str_mv 10.3390/nano13091547
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749233034</galeid><doaj_id>oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb</doaj_id><sourcerecordid>A749233034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</originalsourceid><addsrcrecordid>eNpdkk1rGzEQhpfS0gQ3t56LoJce6lRaSdbqVExIakOgUHLKRehjdldmLbnSrmH_fZU6DU5HB4nRM6_0DlNVHwm-plTib0GHSCiWhDPxprqssZBLJiV5e3a-qK5y3uESktCG0_fVBRVECCzry-px47t-mNEvOELK3gyAHgNah-ggo7FPcep6pNFmdike-mi8RdswQmq1BXQX0x4cMjO6HcCOKQ7zCGjtnB_9ET5U71o9ZLh63hfVw93tw81mef_zx_Zmfb-0nDTjUnPOVg1jpLaiAb4ypNWkhMUOC-NWLQZnCBDNZF1LYlptOLCaWsCUY0wX1fYk66LeqUPye51mFbVXfxMxdUqn0dsBlLQaeMMcUEEZxcwwhjm0ghqtiXGmaH0_aR0mU5xZCGPSwyvR1zfB96qLR0UwaTCtRVH48qyQ4u8J8qj2PlsYBh0gTlnVDaGcNxzXBf38H7qLUwqlVU9UzbGkhBbq-kR1ujjwoY3lYVuWg723MUDrS34tSncoxcXWovp6KrAp5pygffk-weppaNT50BT807nlF_jfiNA_vt-8jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812509313</pqid></control><display><type>article</type><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</creator><creatorcontrib>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</creatorcontrib><description>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO electrolyte with 2 g·L Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm , 5 mAh·cm ). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO full battery is up to 88.6% after 1000 cycles.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13091547</identifier><identifier>PMID: 37177092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; Anodes ; Aqueous electrolytes ; Cell cycle ; Chemical reactions ; Contact angle ; Cycle time ; Electric properties ; Electrodes ; electrolyte additive ; Electrolytes ; Energy resources ; Energy storage ; HER ; Hydrogen evolution reactions ; Hydrophobicity ; Interface stability ; Lithium ; Manganese dioxide ; Mechanical properties ; Methods ; Plating ; Rechargeable batteries ; Side reactions ; Water erosion ; Zinc ; Zinc sulfate ; Zinc-ion batteries</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-05, Vol.13 (9), p.1547</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</citedby><cites>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</cites><orcidid>0000-0002-5943-065X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812509313/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812509313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37177092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Xiaoying</creatorcontrib><creatorcontrib>Tong, Yunwei</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Wu, Zhong</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO electrolyte with 2 g·L Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm , 5 mAh·cm ). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO full battery is up to 88.6% after 1000 cycles.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Anodes</subject><subject>Aqueous electrolytes</subject><subject>Cell cycle</subject><subject>Chemical reactions</subject><subject>Contact angle</subject><subject>Cycle time</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>electrolyte additive</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>HER</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrophobicity</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Manganese dioxide</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Plating</subject><subject>Rechargeable batteries</subject><subject>Side reactions</subject><subject>Water erosion</subject><subject>Zinc</subject><subject>Zinc sulfate</subject><subject>Zinc-ion batteries</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1rGzEQhpfS0gQ3t56LoJce6lRaSdbqVExIakOgUHLKRehjdldmLbnSrmH_fZU6DU5HB4nRM6_0DlNVHwm-plTib0GHSCiWhDPxprqssZBLJiV5e3a-qK5y3uESktCG0_fVBRVECCzry-px47t-mNEvOELK3gyAHgNah-ggo7FPcep6pNFmdike-mi8RdswQmq1BXQX0x4cMjO6HcCOKQ7zCGjtnB_9ET5U71o9ZLh63hfVw93tw81mef_zx_Zmfb-0nDTjUnPOVg1jpLaiAb4ypNWkhMUOC-NWLQZnCBDNZF1LYlptOLCaWsCUY0wX1fYk66LeqUPye51mFbVXfxMxdUqn0dsBlLQaeMMcUEEZxcwwhjm0ghqtiXGmaH0_aR0mU5xZCGPSwyvR1zfB96qLR0UwaTCtRVH48qyQ4u8J8qj2PlsYBh0gTlnVDaGcNxzXBf38H7qLUwqlVU9UzbGkhBbq-kR1ujjwoY3lYVuWg723MUDrS34tSncoxcXWovp6KrAp5pygffk-weppaNT50BT807nlF_jfiNA_vt-8jw</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Yan, Xiaoying</creator><creator>Tong, Yunwei</creator><creator>Liu, Yingjie</creator><creator>Li, Xinyu</creator><creator>Qin, Zhenbo</creator><creator>Wu, Zhong</creator><creator>Hu, Wenbin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5943-065X</orcidid></search><sort><creationdate>20230505</creationdate><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><author>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Anodes</topic><topic>Aqueous electrolytes</topic><topic>Cell cycle</topic><topic>Chemical reactions</topic><topic>Contact angle</topic><topic>Cycle time</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>electrolyte additive</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>HER</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrophobicity</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Manganese dioxide</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Plating</topic><topic>Rechargeable batteries</topic><topic>Side reactions</topic><topic>Water erosion</topic><topic>Zinc</topic><topic>Zinc sulfate</topic><topic>Zinc-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaoying</creatorcontrib><creatorcontrib>Tong, Yunwei</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Wu, Zhong</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaoying</au><au>Tong, Yunwei</au><au>Liu, Yingjie</au><au>Li, Xinyu</au><au>Qin, Zhenbo</au><au>Wu, Zhong</au><au>Hu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2023-05-05</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>1547</spage><pages>1547-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO electrolyte with 2 g·L Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm , 5 mAh·cm ). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO full battery is up to 88.6% after 1000 cycles.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37177092</pmid><doi>10.3390/nano13091547</doi><orcidid>https://orcid.org/0000-0002-5943-065X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2023-05, Vol.13 (9), p.1547
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb
source Publicly Available Content Database; PubMed Central
subjects Alternative energy sources
Analysis
Anodes
Aqueous electrolytes
Cell cycle
Chemical reactions
Contact angle
Cycle time
Electric properties
Electrodes
electrolyte additive
Electrolytes
Energy resources
Energy storage
HER
Hydrogen evolution reactions
Hydrophobicity
Interface stability
Lithium
Manganese dioxide
Mechanical properties
Methods
Plating
Rechargeable batteries
Side reactions
Water erosion
Zinc
Zinc sulfate
Zinc-ion batteries
title Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Zn%20Anodes%20through%20a%20Hydrophobic%20Interface%20Formed%20by%20Electrolyte%20Additive&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yan,%20Xiaoying&rft.date=2023-05-05&rft.volume=13&rft.issue=9&rft.spage=1547&rft.pages=1547-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13091547&rft_dat=%3Cgale_doaj_%3EA749233034%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812509313&rft_id=info:pmid/37177092&rft_galeid=A749233034&rfr_iscdi=true