Loading…
Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive
Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-05, Vol.13 (9), p.1547 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003 |
container_end_page | |
container_issue | 9 |
container_start_page | 1547 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Yan, Xiaoying Tong, Yunwei Liu, Yingjie Li, Xinyu Qin, Zhenbo Wu, Zhong Hu, Wenbin |
description | Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO
electrolyte with 2 g·L
Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm
, 5 mAh·cm
). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO
full battery is up to 88.6% after 1000 cycles. |
doi_str_mv | 10.3390/nano13091547 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749233034</galeid><doaj_id>oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb</doaj_id><sourcerecordid>A749233034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</originalsourceid><addsrcrecordid>eNpdkk1rGzEQhpfS0gQ3t56LoJce6lRaSdbqVExIakOgUHLKRehjdldmLbnSrmH_fZU6DU5HB4nRM6_0DlNVHwm-plTib0GHSCiWhDPxprqssZBLJiV5e3a-qK5y3uESktCG0_fVBRVECCzry-px47t-mNEvOELK3gyAHgNah-ggo7FPcep6pNFmdike-mi8RdswQmq1BXQX0x4cMjO6HcCOKQ7zCGjtnB_9ET5U71o9ZLh63hfVw93tw81mef_zx_Zmfb-0nDTjUnPOVg1jpLaiAb4ypNWkhMUOC-NWLQZnCBDNZF1LYlptOLCaWsCUY0wX1fYk66LeqUPye51mFbVXfxMxdUqn0dsBlLQaeMMcUEEZxcwwhjm0ghqtiXGmaH0_aR0mU5xZCGPSwyvR1zfB96qLR0UwaTCtRVH48qyQ4u8J8qj2PlsYBh0gTlnVDaGcNxzXBf38H7qLUwqlVU9UzbGkhBbq-kR1ujjwoY3lYVuWg723MUDrS34tSncoxcXWovp6KrAp5pygffk-weppaNT50BT807nlF_jfiNA_vt-8jw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812509313</pqid></control><display><type>article</type><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</creator><creatorcontrib>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</creatorcontrib><description>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO
electrolyte with 2 g·L
Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm
, 5 mAh·cm
). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO
full battery is up to 88.6% after 1000 cycles.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13091547</identifier><identifier>PMID: 37177092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alternative energy sources ; Analysis ; Anodes ; Aqueous electrolytes ; Cell cycle ; Chemical reactions ; Contact angle ; Cycle time ; Electric properties ; Electrodes ; electrolyte additive ; Electrolytes ; Energy resources ; Energy storage ; HER ; Hydrogen evolution reactions ; Hydrophobicity ; Interface stability ; Lithium ; Manganese dioxide ; Mechanical properties ; Methods ; Plating ; Rechargeable batteries ; Side reactions ; Water erosion ; Zinc ; Zinc sulfate ; Zinc-ion batteries</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-05, Vol.13 (9), p.1547</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</citedby><cites>FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</cites><orcidid>0000-0002-5943-065X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2812509313/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2812509313?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37177092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Xiaoying</creatorcontrib><creatorcontrib>Tong, Yunwei</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Wu, Zhong</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO
electrolyte with 2 g·L
Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm
, 5 mAh·cm
). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO
full battery is up to 88.6% after 1000 cycles.</description><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Anodes</subject><subject>Aqueous electrolytes</subject><subject>Cell cycle</subject><subject>Chemical reactions</subject><subject>Contact angle</subject><subject>Cycle time</subject><subject>Electric properties</subject><subject>Electrodes</subject><subject>electrolyte additive</subject><subject>Electrolytes</subject><subject>Energy resources</subject><subject>Energy storage</subject><subject>HER</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrophobicity</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Manganese dioxide</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Plating</subject><subject>Rechargeable batteries</subject><subject>Side reactions</subject><subject>Water erosion</subject><subject>Zinc</subject><subject>Zinc sulfate</subject><subject>Zinc-ion batteries</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1rGzEQhpfS0gQ3t56LoJce6lRaSdbqVExIakOgUHLKRehjdldmLbnSrmH_fZU6DU5HB4nRM6_0DlNVHwm-plTib0GHSCiWhDPxprqssZBLJiV5e3a-qK5y3uESktCG0_fVBRVECCzry-px47t-mNEvOELK3gyAHgNah-ggo7FPcep6pNFmdike-mi8RdswQmq1BXQX0x4cMjO6HcCOKQ7zCGjtnB_9ET5U71o9ZLh63hfVw93tw81mef_zx_Zmfb-0nDTjUnPOVg1jpLaiAb4ypNWkhMUOC-NWLQZnCBDNZF1LYlptOLCaWsCUY0wX1fYk66LeqUPye51mFbVXfxMxdUqn0dsBlLQaeMMcUEEZxcwwhjm0ghqtiXGmaH0_aR0mU5xZCGPSwyvR1zfB96qLR0UwaTCtRVH48qyQ4u8J8qj2PlsYBh0gTlnVDaGcNxzXBf38H7qLUwqlVU9UzbGkhBbq-kR1ujjwoY3lYVuWg723MUDrS34tSncoxcXWovp6KrAp5pygffk-weppaNT50BT807nlF_jfiNA_vt-8jw</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Yan, Xiaoying</creator><creator>Tong, Yunwei</creator><creator>Liu, Yingjie</creator><creator>Li, Xinyu</creator><creator>Qin, Zhenbo</creator><creator>Wu, Zhong</creator><creator>Hu, Wenbin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5943-065X</orcidid></search><sort><creationdate>20230505</creationdate><title>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</title><author>Yan, Xiaoying ; Tong, Yunwei ; Liu, Yingjie ; Li, Xinyu ; Qin, Zhenbo ; Wu, Zhong ; Hu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Anodes</topic><topic>Aqueous electrolytes</topic><topic>Cell cycle</topic><topic>Chemical reactions</topic><topic>Contact angle</topic><topic>Cycle time</topic><topic>Electric properties</topic><topic>Electrodes</topic><topic>electrolyte additive</topic><topic>Electrolytes</topic><topic>Energy resources</topic><topic>Energy storage</topic><topic>HER</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrophobicity</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Manganese dioxide</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Plating</topic><topic>Rechargeable batteries</topic><topic>Side reactions</topic><topic>Water erosion</topic><topic>Zinc</topic><topic>Zinc sulfate</topic><topic>Zinc-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaoying</creatorcontrib><creatorcontrib>Tong, Yunwei</creatorcontrib><creatorcontrib>Liu, Yingjie</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Wu, Zhong</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaoying</au><au>Tong, Yunwei</au><au>Liu, Yingjie</au><au>Li, Xinyu</au><au>Qin, Zhenbo</au><au>Wu, Zhong</au><au>Hu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2023-05-05</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>1547</spage><pages>1547-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Hydrogen evolution reaction and dendrite growth seriously break the Zn plating/stripping process at the electrolyte/electrode interface, causing the instability of the Zn anode of aqueous zinc ion batteries. To improve the Zn anode stability and reversibility, we report a new electrolyte additive of aqueous electrolyte with the hydrophobic group. This interfacial hydrophobicity maximises the exclusion of free water from the Zn anode surface, which blocks water erosion and reduces interfacial side reactions. Thus, in an optimal 2 M ZnSO
electrolyte with 2 g·L
Tween-85, the hydrogen evolution reaction and other water-induced undesired reactions can be suppressed, which greatly improves the cycling stability and Coulombic efficiency (CE) of Zn plating/stripping process. The stable cycle time of the Zn//Zn symmetric battery reaches over 1300 h, especially at a high current density and a high areal capacity (more than 650 h at 5 mA·cm
, 5 mAh·cm
). The average Coulomb efficiency (CE) of Zn//Ti asymmetric cell achieves 98.11% after 300 cycles. The capacity retention rate of Zn//MnO
full battery is up to 88.6% after 1000 cycles.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37177092</pmid><doi>10.3390/nano13091547</doi><orcidid>https://orcid.org/0000-0002-5943-065X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-05, Vol.13 (9), p.1547 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9cae584de3734304b4405ef73baa1bdb |
source | Publicly Available Content Database; PubMed Central |
subjects | Alternative energy sources Analysis Anodes Aqueous electrolytes Cell cycle Chemical reactions Contact angle Cycle time Electric properties Electrodes electrolyte additive Electrolytes Energy resources Energy storage HER Hydrogen evolution reactions Hydrophobicity Interface stability Lithium Manganese dioxide Mechanical properties Methods Plating Rechargeable batteries Side reactions Water erosion Zinc Zinc sulfate Zinc-ion batteries |
title | Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Zn%20Anodes%20through%20a%20Hydrophobic%20Interface%20Formed%20by%20Electrolyte%20Additive&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Yan,%20Xiaoying&rft.date=2023-05-05&rft.volume=13&rft.issue=9&rft.spage=1547&rft.pages=1547-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13091547&rft_dat=%3Cgale_doaj_%3EA749233034%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-a554684412c78e56b1fa1111c0d07bd6f0edb1e1a492291bfab5e423ce035003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2812509313&rft_id=info:pmid/37177092&rft_galeid=A749233034&rfr_iscdi=true |