Loading…

Antimicrobial Photodynamic Treatment with Mother Juices and Their Single Compounds as Photosensitizers

The potent antimicrobial effects of antimicrobial photodynamic therapy (aPDT) with visible light plus water-filtered infrared-A irradiation and natural compounds as photosensitizers (PSs) have recently been demonstrated. The aim of this study was to obtain information on the antimicrobial effects of...

Full description

Saved in:
Bibliographic Details
Published in:Nutrients 2021-02, Vol.13 (3), p.710
Main Authors: Chrubasik-Hausmann, Sigrun, Hellwig, Elmar, Müller, Michael, Al-Ahmad, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potent antimicrobial effects of antimicrobial photodynamic therapy (aPDT) with visible light plus water-filtered infrared-A irradiation and natural compounds as photosensitizers (PSs) have recently been demonstrated. The aim of this study was to obtain information on the antimicrobial effects of aPDT with mother juices against typical cariogenic oral pathogens in their planktonic form and determine its eradication potential on total human salivary bacteria from volunteers. Mother juices of pomegranate, bilberry, and chokeberry at different concentrations were used as PSs. The unweighted (absolute) irradiance was 200 mW cm , applied five minutes. Planktonic cultures of and and total mixed bacteria from pooled saliva of volunteers were treated with aPDT. Up to more than 5 log of and were killed by aPDT with 0.4% and 0.8% pomegranate juice, 3% and 50% chokeberry juice, and 12.5% bilberry juice (both strains). Concentrations of at least 25% (pomegranate) and >50% (chokeberry and bilberry) eradicated the mixed bacteria in saliva samples. This pilot study has shown that pomegranate mother juice is superior to the berry juices as a multicomponent PS for killing pathogenic oral bacteria with aPDT.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu13030710