Loading…
Efficient CsPbBr3 Perovskite Solar Cells with Storage Stability > 340 Days
For CsPbBr3 perovskite materials, it is especially important to reduce interface defects, suppress non-radiative recombination, and improve morphology to achieve highly efficient and stable CsPbBr3 perovskite solar cells (PSCs). Herein, we reported a facile but highly efficient approach in additive...
Saved in:
Published in: | Energies (Basel) 2022-10, Vol.15 (20), p.7740 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For CsPbBr3 perovskite materials, it is especially important to reduce interface defects, suppress non-radiative recombination, and improve morphology to achieve highly efficient and stable CsPbBr3 perovskite solar cells (PSCs). Herein, we reported a facile but highly efficient approach in additive engineering for improving the efficiency and stability of CsPbBr3 PSCs. It was found that phenethylammonium iodide can passivate interface defects, suppress non-radiative recombination, and increase the grain sizes of CsPbBr3 films by optimizing crystal quality and interface contact. As a result, a carbon-based CsPbBr3 PSC with power conversion efficiency > 8.51%, storage stability > 340 days, and excellent harsh stability under high temperature and humidity, has been achieved. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15207740 |