Loading…
Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm
Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is...
Saved in:
Published in: | Mathematics (Basel) 2021-09, Vol.9 (18), p.2212 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3 |
container_end_page | |
container_issue | 18 |
container_start_page | 2212 |
container_title | Mathematics (Basel) |
container_volume | 9 |
creator | Liu, Xiaomin Abbas, Muhammad Hu, Gang BiBi, Samia |
description | Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it. |
doi_str_mv | 10.3390/math9182212 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9cbb8da623b241c381860714447c284b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9cbb8da623b241c381860714447c284b</doaj_id><sourcerecordid>2576454057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGqvfIGAl7Kav02yl239KxREq9dhks22KW3TZncL-kY-hy_makWcmxkOh28OB6FzSq44L8j1GppFQTVjlB2hHmNMZarTj__dp2hQ10vSTUG5FkUPjW78PHmPn33ZuibEDY4VfspGnx_vwSc8btPe13gfAM92bUjJr_DMQ3ILPFzNYwrNYn2GTipY1X7wu_vo9e72ZfyQTR_vJ-PhNHOsEE0mZGktEFdKr3hFSialrjhQTitSKUkEcYyBo9xqZnOQknMOGmReSmsL7XkfTQ7cMsLSbFNYQ3ozEYL5EWKaG0hNcCtvCmetLkEybpmgjmuqJVFUCKEc08J2rIsDa5virvV1Y5axTZsuvmG5kiIXJFed6_LgcinWdfLV31dKzHfn5l_n_Av_2HKp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576454057</pqid></control><display><type>article</type><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><source>Publicly Available Content Database</source><creator>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</creator><creatorcontrib>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</creatorcontrib><description>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9182212</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; control points ; Curves ; Degree reduction ; Design ; Food science ; Methods ; Optimization ; Optimization algorithms ; Optimization techniques ; Q-Bernstein polynomials ; Q-Bézier curves ; Search algorithms ; squirrel search algorithm ; Squirrels ; Swarm intelligence</subject><ispartof>Mathematics (Basel), 2021-09, Vol.9 (18), p.2212</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</citedby><cites>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</cites><orcidid>0000-0002-0491-1528 ; 0000-0003-4916-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576454057/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576454057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>BiBi, Samia</creatorcontrib><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><title>Mathematics (Basel)</title><description>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</description><subject>Approximation</subject><subject>control points</subject><subject>Curves</subject><subject>Degree reduction</subject><subject>Design</subject><subject>Food science</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Q-Bernstein polynomials</subject><subject>Q-Bézier curves</subject><subject>Search algorithms</subject><subject>squirrel search algorithm</subject><subject>Squirrels</subject><subject>Swarm intelligence</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1KAzEQhYMoWGqvfIGAl7Kav02yl239KxREq9dhks22KW3TZncL-kY-hy_makWcmxkOh28OB6FzSq44L8j1GppFQTVjlB2hHmNMZarTj__dp2hQ10vSTUG5FkUPjW78PHmPn33ZuibEDY4VfspGnx_vwSc8btPe13gfAM92bUjJr_DMQ3ILPFzNYwrNYn2GTipY1X7wu_vo9e72ZfyQTR_vJ-PhNHOsEE0mZGktEFdKr3hFSialrjhQTitSKUkEcYyBo9xqZnOQknMOGmReSmsL7XkfTQ7cMsLSbFNYQ3ozEYL5EWKaG0hNcCtvCmetLkEybpmgjmuqJVFUCKEc08J2rIsDa5virvV1Y5axTZsuvmG5kiIXJFed6_LgcinWdfLV31dKzHfn5l_n_Av_2HKp</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Xiaomin</creator><creator>Abbas, Muhammad</creator><creator>Hu, Gang</creator><creator>BiBi, Samia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid><orcidid>https://orcid.org/0000-0003-4916-3460</orcidid></search><sort><creationdate>20210901</creationdate><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><author>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>control points</topic><topic>Curves</topic><topic>Degree reduction</topic><topic>Design</topic><topic>Food science</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Q-Bernstein polynomials</topic><topic>Q-Bézier curves</topic><topic>Search algorithms</topic><topic>squirrel search algorithm</topic><topic>Squirrels</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>BiBi, Samia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaomin</au><au>Abbas, Muhammad</au><au>Hu, Gang</au><au>BiBi, Samia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><spage>2212</spage><pages>2212-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9182212</doi><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid><orcidid>https://orcid.org/0000-0003-4916-3460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2021-09, Vol.9 (18), p.2212 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9cbb8da623b241c381860714447c284b |
source | Publicly Available Content Database |
subjects | Approximation control points Curves Degree reduction Design Food science Methods Optimization Optimization algorithms Optimization techniques Q-Bernstein polynomials Q-Bézier curves Search algorithms squirrel search algorithm Squirrels Swarm intelligence |
title | Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degree%20Reduction%20of%20Q-B%C3%A9zier%20Curves%20via%20Squirrel%20Search%20Algorithm&rft.jtitle=Mathematics%20(Basel)&rft.au=Liu,%20Xiaomin&rft.date=2021-09-01&rft.volume=9&rft.issue=18&rft.spage=2212&rft.pages=2212-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9182212&rft_dat=%3Cproquest_doaj_%3E2576454057%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576454057&rft_id=info:pmid/&rfr_iscdi=true |