Loading…

Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm

Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2021-09, Vol.9 (18), p.2212
Main Authors: Liu, Xiaomin, Abbas, Muhammad, Hu, Gang, BiBi, Samia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3
cites cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3
container_end_page
container_issue 18
container_start_page 2212
container_title Mathematics (Basel)
container_volume 9
creator Liu, Xiaomin
Abbas, Muhammad
Hu, Gang
BiBi, Samia
description Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.
doi_str_mv 10.3390/math9182212
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9cbb8da623b241c381860714447c284b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9cbb8da623b241c381860714447c284b</doaj_id><sourcerecordid>2576454057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</originalsourceid><addsrcrecordid>eNpNkN1KAzEQhYMoWGqvfIGAl7Kav02yl239KxREq9dhks22KW3TZncL-kY-hy_makWcmxkOh28OB6FzSq44L8j1GppFQTVjlB2hHmNMZarTj__dp2hQ10vSTUG5FkUPjW78PHmPn33ZuibEDY4VfspGnx_vwSc8btPe13gfAM92bUjJr_DMQ3ILPFzNYwrNYn2GTipY1X7wu_vo9e72ZfyQTR_vJ-PhNHOsEE0mZGktEFdKr3hFSialrjhQTitSKUkEcYyBo9xqZnOQknMOGmReSmsL7XkfTQ7cMsLSbFNYQ3ozEYL5EWKaG0hNcCtvCmetLkEybpmgjmuqJVFUCKEc08J2rIsDa5virvV1Y5axTZsuvmG5kiIXJFed6_LgcinWdfLV31dKzHfn5l_n_Av_2HKp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576454057</pqid></control><display><type>article</type><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><source>Publicly Available Content Database</source><creator>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</creator><creatorcontrib>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</creatorcontrib><description>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math9182212</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Approximation ; control points ; Curves ; Degree reduction ; Design ; Food science ; Methods ; Optimization ; Optimization algorithms ; Optimization techniques ; Q-Bernstein polynomials ; Q-Bézier curves ; Search algorithms ; squirrel search algorithm ; Squirrels ; Swarm intelligence</subject><ispartof>Mathematics (Basel), 2021-09, Vol.9 (18), p.2212</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</citedby><cites>FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</cites><orcidid>0000-0002-0491-1528 ; 0000-0003-4916-3460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2576454057/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2576454057?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>BiBi, Samia</creatorcontrib><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><title>Mathematics (Basel)</title><description>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</description><subject>Approximation</subject><subject>control points</subject><subject>Curves</subject><subject>Degree reduction</subject><subject>Design</subject><subject>Food science</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Q-Bernstein polynomials</subject><subject>Q-Bézier curves</subject><subject>Search algorithms</subject><subject>squirrel search algorithm</subject><subject>Squirrels</subject><subject>Swarm intelligence</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1KAzEQhYMoWGqvfIGAl7Kav02yl239KxREq9dhks22KW3TZncL-kY-hy_makWcmxkOh28OB6FzSq44L8j1GppFQTVjlB2hHmNMZarTj__dp2hQ10vSTUG5FkUPjW78PHmPn33ZuibEDY4VfspGnx_vwSc8btPe13gfAM92bUjJr_DMQ3ILPFzNYwrNYn2GTipY1X7wu_vo9e72ZfyQTR_vJ-PhNHOsEE0mZGktEFdKr3hFSialrjhQTitSKUkEcYyBo9xqZnOQknMOGmReSmsL7XkfTQ7cMsLSbFNYQ3ozEYL5EWKaG0hNcCtvCmetLkEybpmgjmuqJVFUCKEc08J2rIsDa5virvV1Y5axTZsuvmG5kiIXJFed6_LgcinWdfLV31dKzHfn5l_n_Av_2HKp</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Xiaomin</creator><creator>Abbas, Muhammad</creator><creator>Hu, Gang</creator><creator>BiBi, Samia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid><orcidid>https://orcid.org/0000-0003-4916-3460</orcidid></search><sort><creationdate>20210901</creationdate><title>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</title><author>Liu, Xiaomin ; Abbas, Muhammad ; Hu, Gang ; BiBi, Samia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>control points</topic><topic>Curves</topic><topic>Degree reduction</topic><topic>Design</topic><topic>Food science</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Q-Bernstein polynomials</topic><topic>Q-Bézier curves</topic><topic>Search algorithms</topic><topic>squirrel search algorithm</topic><topic>Squirrels</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Hu, Gang</creatorcontrib><creatorcontrib>BiBi, Samia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiaomin</au><au>Abbas, Muhammad</au><au>Hu, Gang</au><au>BiBi, Samia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm</atitle><jtitle>Mathematics (Basel)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><spage>2212</spage><pages>2212-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>Q-Bézier curves find extensive applications in shape design owing to their excellent geometric properties and good shape adjustability. In this article, a new method for the multiple-degree reduction of Q-Bézier curves by incorporating the swarm intelligence-based squirrel search algorithm (SSA) is proposed. We formulate the degree reduction as an optimization problem, in which the objective function is defined as the distance between the original curve and the approximate curve. By using the squirrel search algorithm, we search within a reasonable range for the optimal set of control points of the approximate curve to minimize the objective function. As a result, the optimal approximating Q-Bézier curve of lower degree can be found. The feasibility of the method is verified by several examples, which show that the method is easy to implement, and good degree reduction effect can be achieved using it.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math9182212</doi><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid><orcidid>https://orcid.org/0000-0003-4916-3460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2021-09, Vol.9 (18), p.2212
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9cbb8da623b241c381860714447c284b
source Publicly Available Content Database
subjects Approximation
control points
Curves
Degree reduction
Design
Food science
Methods
Optimization
Optimization algorithms
Optimization techniques
Q-Bernstein polynomials
Q-Bézier curves
Search algorithms
squirrel search algorithm
Squirrels
Swarm intelligence
title Degree Reduction of Q-Bézier Curves via Squirrel Search Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degree%20Reduction%20of%20Q-B%C3%A9zier%20Curves%20via%20Squirrel%20Search%20Algorithm&rft.jtitle=Mathematics%20(Basel)&rft.au=Liu,%20Xiaomin&rft.date=2021-09-01&rft.volume=9&rft.issue=18&rft.spage=2212&rft.pages=2212-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math9182212&rft_dat=%3Cproquest_doaj_%3E2576454057%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-46dbba0cd6e73f0d2668f3a131f0f76040c22ac13b82b5a66333a8a65d6bb98e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2576454057&rft_id=info:pmid/&rfr_iscdi=true