Loading…

Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data

A survey of presences and absences of specific species across multiple biogeographic units (or bioregions) are used in a broad area of biological studies from ecology to microbiology. Using binary presence-absence data, we evaluate species co-occurrences that help elucidate relationships among organ...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics 2019-12, Vol.20 (Suppl 15), p.644-644, Article 644
Main Authors: Chung, Neo Christopher, Miasojedow, BłaŻej, Startek, Michał, Gambin, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A survey of presences and absences of specific species across multiple biogeographic units (or bioregions) are used in a broad area of biological studies from ecology to microbiology. Using binary presence-absence data, we evaluate species co-occurrences that help elucidate relationships among organisms and environments. To summarize similarity between occurrences of species, we routinely use the Jaccard/Tanimoto coefficient, which is the ratio of their intersection to their union. It is natural, then, to identify statistically significant Jaccard/Tanimoto coefficients, which suggest non-random co-occurrences of species. However, statistical hypothesis testing using this similarity coefficient has been seldom used or studied. We introduce a hypothesis test for similarity for biological presence-absence data, using the Jaccard/Tanimoto coefficient. Several key improvements are presented including unbiased estimation of expectation and centered Jaccard/Tanimoto coefficients, that account for occurrence probabilities. The exact and asymptotic solutions are derived. To overcome a computational burden due to high-dimensionality, we propose the bootstrap and measurement concentration algorithms to efficiently estimate statistical significance of binary similarity. Comprehensive simulation studies demonstrate that our proposed methods produce accurate p-values and false discovery rates. The proposed estimation methods are orders of magnitude faster than the exact solution, particularly with an increasing dimensionality. We showcase their applications in evaluating co-occurrences of bird species in 28 islands of Vanuatu and fish species in 3347 freshwater habitats in France. The proposed methods are implemented in an open source R package called jaccard (https://cran.r-project.org/package=jaccard). We introduce a suite of statistical methods for the Jaccard/Tanimoto similarity coefficient for binary data, that enable straightforward incorporation of probabilistic measures in analysis for species co-occurrences. Due to their generality, the proposed methods and implementations are applicable to a wide range of binary data arising from genomics, biochemistry, and other areas of science.
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-019-3118-5