Loading…
Super-resolution reconstruction of seismic section image via multi-scale convolution neural network
The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs...
Saved in:
Published in: | E3S web of conferences 2021-01, Vol.303, p.1058 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913 |
---|---|
cites | cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913 |
container_end_page | |
container_issue | |
container_start_page | 1058 |
container_title | E3S web of conferences |
container_volume | 303 |
creator | Deng, Meng-Di Jia, Rui-Sheng Sun, Hong-Mei Zhang, Xing-Li |
description | The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method. |
doi_str_mv | 10.1051/e3sconf/202130301058 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf</doaj_id><sourcerecordid>2583077851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</originalsourceid><addsrcrecordid>eNpNkctOwzAQRS0EElXpH7CIxDrUryTOElU8KlViAawtZ2xXLmlc7KSIv8dtCurG13NlnxnNReiW4HuCCzI3LILv7JxiShhmOJniAk0oLaucUE4vz-7XaBbjBmNMaCE45hMEb8POhDyY6Nuhd77Lgkm42IcBjqW3WTQubh0kHS23VWuT7Z3KtkPbuzyCak2Wfu3_GJ0ZgmqT9N8-fN6gK6vaaGYnnaKPp8f3xUu-en1eLh5WOTBcitxiYy3XFWe2akArA5xXUNWM2NoqUuuiUYpZWjasVlRrbZtScaAceMPLmrApWo5c7dVG7kKaM_xIr5w8Gj6spQq9g9bIGkCXtWAgGOOEG9EAAcITLZ2isYl1N7J2wX8NJvZy44fQpfFlWh3DVSWKQ0c-voLgYwzG_nclWB7Skad05Hk67BeKnIav</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583077851</pqid></control><display><type>article</type><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><source>Publicly Available Content Database</source><creator>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li</creator><contributor>Chen, S. ; Yao, Q. ; Qiao, W. ; Gao, S. ; Chen, L.</contributor><creatorcontrib>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li ; Chen, S. ; Yao, Q. ; Qiao, W. ; Gao, S. ; Chen, L.</creatorcontrib><description>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202130301058</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Artificial neural networks ; Convolution ; High resolution ; Image processing ; Image reconstruction ; Image resolution ; Neural networks ; Pixels ; Signal to noise ratio ; Spatial discrimination ; Spatial resolution</subject><ispartof>E3S web of conferences, 2021-01, Vol.303, p.1058</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</citedby><cites>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583077851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Chen, S.</contributor><contributor>Yao, Q.</contributor><contributor>Qiao, W.</contributor><contributor>Gao, S.</contributor><contributor>Chen, L.</contributor><creatorcontrib>Deng, Meng-Di</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Sun, Hong-Mei</creatorcontrib><creatorcontrib>Zhang, Xing-Li</creatorcontrib><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><title>E3S web of conferences</title><description>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>High resolution</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Signal to noise ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRS0EElXpH7CIxDrUryTOElU8KlViAawtZ2xXLmlc7KSIv8dtCurG13NlnxnNReiW4HuCCzI3LILv7JxiShhmOJniAk0oLaucUE4vz-7XaBbjBmNMaCE45hMEb8POhDyY6Nuhd77Lgkm42IcBjqW3WTQubh0kHS23VWuT7Z3KtkPbuzyCak2Wfu3_GJ0ZgmqT9N8-fN6gK6vaaGYnnaKPp8f3xUu-en1eLh5WOTBcitxiYy3XFWe2akArA5xXUNWM2NoqUuuiUYpZWjasVlRrbZtScaAceMPLmrApWo5c7dVG7kKaM_xIr5w8Gj6spQq9g9bIGkCXtWAgGOOEG9EAAcITLZ2isYl1N7J2wX8NJvZy44fQpfFlWh3DVSWKQ0c-voLgYwzG_nclWB7Skad05Hk67BeKnIav</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Deng, Meng-Di</creator><creator>Jia, Rui-Sheng</creator><creator>Sun, Hong-Mei</creator><creator>Zhang, Xing-Li</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><author>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>High resolution</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Signal to noise ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Meng-Di</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Sun, Hong-Mei</creatorcontrib><creatorcontrib>Zhang, Xing-Li</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Meng-Di</au><au>Jia, Rui-Sheng</au><au>Sun, Hong-Mei</au><au>Zhang, Xing-Li</au><au>Chen, S.</au><au>Yao, Q.</au><au>Qiao, W.</au><au>Gao, S.</au><au>Chen, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</atitle><jtitle>E3S web of conferences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>303</volume><spage>1058</spage><pages>1058-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202130301058</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S web of conferences, 2021-01, Vol.303, p.1058 |
issn | 2267-1242 2555-0403 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf |
source | Publicly Available Content Database |
subjects | Artificial neural networks Convolution High resolution Image processing Image reconstruction Image resolution Neural networks Pixels Signal to noise ratio Spatial discrimination Spatial resolution |
title | Super-resolution reconstruction of seismic section image via multi-scale convolution neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-resolution%20reconstruction%20of%20seismic%20section%20image%20via%20multi-scale%20convolution%20neural%20network&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Deng,%20Meng-Di&rft.date=2021-01-01&rft.volume=303&rft.spage=1058&rft.pages=1058-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202130301058&rft_dat=%3Cproquest_doaj_%3E2583077851%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583077851&rft_id=info:pmid/&rfr_iscdi=true |