Loading…

Super-resolution reconstruction of seismic section image via multi-scale convolution neural network

The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2021-01, Vol.303, p.1058
Main Authors: Deng, Meng-Di, Jia, Rui-Sheng, Sun, Hong-Mei, Zhang, Xing-Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913
cites cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913
container_end_page
container_issue
container_start_page 1058
container_title E3S web of conferences
container_volume 303
creator Deng, Meng-Di
Jia, Rui-Sheng
Sun, Hong-Mei
Zhang, Xing-Li
description The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.
doi_str_mv 10.1051/e3sconf/202130301058
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf</doaj_id><sourcerecordid>2583077851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</originalsourceid><addsrcrecordid>eNpNkctOwzAQRS0EElXpH7CIxDrUryTOElU8KlViAawtZ2xXLmlc7KSIv8dtCurG13NlnxnNReiW4HuCCzI3LILv7JxiShhmOJniAk0oLaucUE4vz-7XaBbjBmNMaCE45hMEb8POhDyY6Nuhd77Lgkm42IcBjqW3WTQubh0kHS23VWuT7Z3KtkPbuzyCak2Wfu3_GJ0ZgmqT9N8-fN6gK6vaaGYnnaKPp8f3xUu-en1eLh5WOTBcitxiYy3XFWe2akArA5xXUNWM2NoqUuuiUYpZWjasVlRrbZtScaAceMPLmrApWo5c7dVG7kKaM_xIr5w8Gj6spQq9g9bIGkCXtWAgGOOEG9EAAcITLZ2isYl1N7J2wX8NJvZy44fQpfFlWh3DVSWKQ0c-voLgYwzG_nclWB7Skad05Hk67BeKnIav</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583077851</pqid></control><display><type>article</type><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><source>Publicly Available Content Database</source><creator>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li</creator><contributor>Chen, S. ; Yao, Q. ; Qiao, W. ; Gao, S. ; Chen, L.</contributor><creatorcontrib>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li ; Chen, S. ; Yao, Q. ; Qiao, W. ; Gao, S. ; Chen, L.</creatorcontrib><description>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202130301058</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Artificial neural networks ; Convolution ; High resolution ; Image processing ; Image reconstruction ; Image resolution ; Neural networks ; Pixels ; Signal to noise ratio ; Spatial discrimination ; Spatial resolution</subject><ispartof>E3S web of conferences, 2021-01, Vol.303, p.1058</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</citedby><cites>FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583077851?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Chen, S.</contributor><contributor>Yao, Q.</contributor><contributor>Qiao, W.</contributor><contributor>Gao, S.</contributor><contributor>Chen, L.</contributor><creatorcontrib>Deng, Meng-Di</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Sun, Hong-Mei</creatorcontrib><creatorcontrib>Zhang, Xing-Li</creatorcontrib><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><title>E3S web of conferences</title><description>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>High resolution</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Signal to noise ratio</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctOwzAQRS0EElXpH7CIxDrUryTOElU8KlViAawtZ2xXLmlc7KSIv8dtCurG13NlnxnNReiW4HuCCzI3LILv7JxiShhmOJniAk0oLaucUE4vz-7XaBbjBmNMaCE45hMEb8POhDyY6Nuhd77Lgkm42IcBjqW3WTQubh0kHS23VWuT7Z3KtkPbuzyCak2Wfu3_GJ0ZgmqT9N8-fN6gK6vaaGYnnaKPp8f3xUu-en1eLh5WOTBcitxiYy3XFWe2akArA5xXUNWM2NoqUuuiUYpZWjasVlRrbZtScaAceMPLmrApWo5c7dVG7kKaM_xIr5w8Gj6spQq9g9bIGkCXtWAgGOOEG9EAAcITLZ2isYl1N7J2wX8NJvZy44fQpfFlWh3DVSWKQ0c-voLgYwzG_nclWB7Skad05Hk67BeKnIav</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Deng, Meng-Di</creator><creator>Jia, Rui-Sheng</creator><creator>Sun, Hong-Mei</creator><creator>Zhang, Xing-Li</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</title><author>Deng, Meng-Di ; Jia, Rui-Sheng ; Sun, Hong-Mei ; Zhang, Xing-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>High resolution</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Signal to noise ratio</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Meng-Di</creatorcontrib><creatorcontrib>Jia, Rui-Sheng</creatorcontrib><creatorcontrib>Sun, Hong-Mei</creatorcontrib><creatorcontrib>Zhang, Xing-Li</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Meng-Di</au><au>Jia, Rui-Sheng</au><au>Sun, Hong-Mei</au><au>Zhang, Xing-Li</au><au>Chen, S.</au><au>Yao, Q.</au><au>Qiao, W.</au><au>Gao, S.</au><au>Chen, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-resolution reconstruction of seismic section image via multi-scale convolution neural network</atitle><jtitle>E3S web of conferences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>303</volume><spage>1058</spage><pages>1058-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>The resolution of seismic section images can directly affect the subsequent interpretation of seismic data. In order to improve the spatial resolution of low-resolution seismic section images, a super-resolution reconstruction method based on multi-scale convolution is proposed. This method designs a multi-scale convolutional neural network to learn high-low resolution image feature pairs, and realizes mapping learning from low-resolution seismic section images to high-resolution seismic section images. This multi-scale convolutional neural network model consists of four convolutional layers and a sub-pixel convolutional layer. Convolution operations are used to learn abundant seismic section image features, and sub-pixel convolution layer is used to reconstruct high-resolution seismic section image. The experimental results show that the proposed method is superior to the comparison method in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the total training time and reconstruction time, our method is about 22% less than the FSRCNN method and about 18% less than the ESPCN method.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202130301058</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2021-01, Vol.303, p.1058
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9ccd6983c833414e8bc1c144c2c148bf
source Publicly Available Content Database
subjects Artificial neural networks
Convolution
High resolution
Image processing
Image reconstruction
Image resolution
Neural networks
Pixels
Signal to noise ratio
Spatial discrimination
Spatial resolution
title Super-resolution reconstruction of seismic section image via multi-scale convolution neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-resolution%20reconstruction%20of%20seismic%20section%20image%20via%20multi-scale%20convolution%20neural%20network&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Deng,%20Meng-Di&rft.date=2021-01-01&rft.volume=303&rft.spage=1058&rft.pages=1058-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202130301058&rft_dat=%3Cproquest_doaj_%3E2583077851%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3068-f0eff4d743f7bcdaec447c7931f9fa19d5baa3f26b39a2dddfb6a4c24c4b46913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583077851&rft_id=info:pmid/&rfr_iscdi=true