Loading…
Correlation between surface texture and internal defects in laser powder-bed fusion additive manufacturing
The availability of an in-situ monitoring and feedback control system during the implementation of metal additive manufacturing technology ensures that high-quality finished parts are manufactured. This study aims to investigate the correlation between the surface texture and internal defects or den...
Saved in:
Published in: | Scientific reports 2021-11, Vol.11 (1), p.22874-22874, Article 22874 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The availability of an in-situ monitoring and feedback control system during the implementation of metal additive manufacturing technology ensures that high-quality finished parts are manufactured. This study aims to investigate the correlation between the surface texture and internal defects or density of laser-beam powder-bed fusion (LB-PBF) parts. In this study, 120 cubic specimens were fabricated via application of the LB-PBF process to the IN 718 Ni alloy powder. The density and 35 areal surface-texture parameters of manufactured specimens were determined based on the ISO 25,178–2 standard. Using a statistical method, a strong correlation was observed between the areal surface-texture parameters and density or internal defects within specimens. In particular, the areal surface-texture parameters of reduced dale height, core height, root-mean-square height, and root-mean-square gradient demonstrate a strong correlation with specimen density. Therefore, in-situ monitoring of these areal surface-texture parameters can facilitate their use as control variables in the feedback system. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-02240-z |