Loading…

Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme

Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer's disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-acti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2015-03, Vol.16 (3), p.5235-5253
Main Authors: Leal, Felipe Dias, da Silva Lima, Camilo Henrique, de Alencastro, Ricardo Bicca, Castro, Helena Carla, Rodrigues, Carlos Rangel, Albuquerque, Magaly Girão
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer's disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms16035235