Loading…
A machine learning-based system for detecting leishmaniasis in microscopic images
Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. Ho...
Saved in:
Published in: | BMC infectious diseases 2022-01, Vol.22 (1), p.48-48, Article 48 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663 |
---|---|
cites | cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 48 |
container_title | BMC infectious diseases |
container_volume | 22 |
creator | Zare, Mojtaba Akbarialiabad, Hossein Parsaei, Hossein Asgari, Qasem Alinejad, Ali Bahreini, Mohammad Saleh Hosseini, Seyed Hossein Ghofrani-Jahromi, Mohsen Shahriarirad, Reza Amirmoezzi, Yalda Shahriarirad, Sepehr Zeighami, Ali Abdollahifard, Gholamreza |
description | Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis.
We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier.
A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages.
The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods. |
doi_str_mv | 10.1186/s12879-022-07029-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693699738</galeid><doaj_id>oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e</doaj_id><sourcerecordid>A693699738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwB1igSGzKIsWv-LFBGlU8RqpU8dxad5ybjEeJXewMov8eT6eUDmKBvLB1_Z1z5etTVc8pOaNUy9eZMq1MQxhriCLMNOpBdUyFog3jXDy8dz6qnuS8IYQqzczj6oi3RUQ4Pa4-LuoJ3NoHrEeEFHwYmhVk7Op8nWec6j6musMZ3VyuCuPzeoLgIftc-1BP3qWYXbzyrvYTDJifVo96GDM-u91Pqq_v3n45_9BcXL5fni8uGieNmhvHqJRMMBRKtRqlM4QRMIiSc8OQo5TOdSvsetoL41YalO616iWABCElP6mWe98uwsZepdI9XdsI3t4UYhospNm7Ea3pispx6J0GoaFbtRJFseklQ80VFq83e6-r7WrCzmGYE4wHpoc3wa_tEH9YrVpBlCoGp7cGKX7fYp7t5LPDcYSAcZstk9S0QnDGCvryL3QTtymUURWKEWNaSfgfaoDyAB_6WPq6naldSMOlMYrrQp39gyqrw_IxMWDvS_1A8OpAUJgZf84DbHO2y8-f_p-9_HbIsj27S0NO2N_NjhK7C6vdh9WW3NmbsNrd0F7cn_qd5Hc6-S_KSeNP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620995603</pqid></control><display><type>article</type><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</creator><creatorcontrib>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</creatorcontrib><description>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis.
We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier.
A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages.
The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</description><identifier>ISSN: 1471-2334</identifier><identifier>EISSN: 1471-2334</identifier><identifier>DOI: 10.1186/s12879-022-07029-7</identifier><identifier>PMID: 35022031</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaboost ; Algorithms ; Amastigotes ; Artificial Intelligence ; Biopsy ; Care and treatment ; Cutaneous leishmaniasis ; Diagnosis ; Feature extraction ; Humans ; Image classification ; Image processing ; Infectious diseases ; Laboratories ; Learning algorithms ; Leishmania ; Leishmaniasis ; Leishmaniasis - diagnosis ; Leishmaniasis, Cutaneous ; Machine Learning ; Macrophages ; Malaria ; Medical imaging ; Methods ; Microscopy, Medical ; Morphology ; Parasites ; Parasitic diseases ; Risk factors ; Vector-borne diseases ; Viola-Jones</subject><ispartof>BMC infectious diseases, 2022-01, Vol.22 (1), p.48-48, Article 48</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</citedby><cites>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2620995603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35022031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zare, Mojtaba</creatorcontrib><creatorcontrib>Akbarialiabad, Hossein</creatorcontrib><creatorcontrib>Parsaei, Hossein</creatorcontrib><creatorcontrib>Asgari, Qasem</creatorcontrib><creatorcontrib>Alinejad, Ali</creatorcontrib><creatorcontrib>Bahreini, Mohammad Saleh</creatorcontrib><creatorcontrib>Hosseini, Seyed Hossein</creatorcontrib><creatorcontrib>Ghofrani-Jahromi, Mohsen</creatorcontrib><creatorcontrib>Shahriarirad, Reza</creatorcontrib><creatorcontrib>Amirmoezzi, Yalda</creatorcontrib><creatorcontrib>Shahriarirad, Sepehr</creatorcontrib><creatorcontrib>Zeighami, Ali</creatorcontrib><creatorcontrib>Abdollahifard, Gholamreza</creatorcontrib><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><title>BMC infectious diseases</title><addtitle>BMC Infect Dis</addtitle><description>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis.
We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier.
A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages.
The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</description><subject>Adaboost</subject><subject>Algorithms</subject><subject>Amastigotes</subject><subject>Artificial Intelligence</subject><subject>Biopsy</subject><subject>Care and treatment</subject><subject>Cutaneous leishmaniasis</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Leishmania</subject><subject>Leishmaniasis</subject><subject>Leishmaniasis - diagnosis</subject><subject>Leishmaniasis, Cutaneous</subject><subject>Machine Learning</subject><subject>Macrophages</subject><subject>Malaria</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Microscopy, Medical</subject><subject>Morphology</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Risk factors</subject><subject>Vector-borne diseases</subject><subject>Viola-Jones</subject><issn>1471-2334</issn><issn>1471-2334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEoqXwB1igSGzKIsWv-LFBGlU8RqpU8dxad5ybjEeJXewMov8eT6eUDmKBvLB1_Z1z5etTVc8pOaNUy9eZMq1MQxhriCLMNOpBdUyFog3jXDy8dz6qnuS8IYQqzczj6oi3RUQ4Pa4-LuoJ3NoHrEeEFHwYmhVk7Op8nWec6j6musMZ3VyuCuPzeoLgIftc-1BP3qWYXbzyrvYTDJifVo96GDM-u91Pqq_v3n45_9BcXL5fni8uGieNmhvHqJRMMBRKtRqlM4QRMIiSc8OQo5TOdSvsetoL41YalO616iWABCElP6mWe98uwsZepdI9XdsI3t4UYhospNm7Ea3pispx6J0GoaFbtRJFseklQ80VFq83e6-r7WrCzmGYE4wHpoc3wa_tEH9YrVpBlCoGp7cGKX7fYp7t5LPDcYSAcZstk9S0QnDGCvryL3QTtymUURWKEWNaSfgfaoDyAB_6WPq6naldSMOlMYrrQp39gyqrw_IxMWDvS_1A8OpAUJgZf84DbHO2y8-f_p-9_HbIsj27S0NO2N_NjhK7C6vdh9WW3NmbsNrd0F7cn_qd5Hc6-S_KSeNP</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Zare, Mojtaba</creator><creator>Akbarialiabad, Hossein</creator><creator>Parsaei, Hossein</creator><creator>Asgari, Qasem</creator><creator>Alinejad, Ali</creator><creator>Bahreini, Mohammad Saleh</creator><creator>Hosseini, Seyed Hossein</creator><creator>Ghofrani-Jahromi, Mohsen</creator><creator>Shahriarirad, Reza</creator><creator>Amirmoezzi, Yalda</creator><creator>Shahriarirad, Sepehr</creator><creator>Zeighami, Ali</creator><creator>Abdollahifard, Gholamreza</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220112</creationdate><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><author>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaboost</topic><topic>Algorithms</topic><topic>Amastigotes</topic><topic>Artificial Intelligence</topic><topic>Biopsy</topic><topic>Care and treatment</topic><topic>Cutaneous leishmaniasis</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Leishmania</topic><topic>Leishmaniasis</topic><topic>Leishmaniasis - diagnosis</topic><topic>Leishmaniasis, Cutaneous</topic><topic>Machine Learning</topic><topic>Macrophages</topic><topic>Malaria</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Microscopy, Medical</topic><topic>Morphology</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Risk factors</topic><topic>Vector-borne diseases</topic><topic>Viola-Jones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zare, Mojtaba</creatorcontrib><creatorcontrib>Akbarialiabad, Hossein</creatorcontrib><creatorcontrib>Parsaei, Hossein</creatorcontrib><creatorcontrib>Asgari, Qasem</creatorcontrib><creatorcontrib>Alinejad, Ali</creatorcontrib><creatorcontrib>Bahreini, Mohammad Saleh</creatorcontrib><creatorcontrib>Hosseini, Seyed Hossein</creatorcontrib><creatorcontrib>Ghofrani-Jahromi, Mohsen</creatorcontrib><creatorcontrib>Shahriarirad, Reza</creatorcontrib><creatorcontrib>Amirmoezzi, Yalda</creatorcontrib><creatorcontrib>Shahriarirad, Sepehr</creatorcontrib><creatorcontrib>Zeighami, Ali</creatorcontrib><creatorcontrib>Abdollahifard, Gholamreza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>BMC infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zare, Mojtaba</au><au>Akbarialiabad, Hossein</au><au>Parsaei, Hossein</au><au>Asgari, Qasem</au><au>Alinejad, Ali</au><au>Bahreini, Mohammad Saleh</au><au>Hosseini, Seyed Hossein</au><au>Ghofrani-Jahromi, Mohsen</au><au>Shahriarirad, Reza</au><au>Amirmoezzi, Yalda</au><au>Shahriarirad, Sepehr</au><au>Zeighami, Ali</au><au>Abdollahifard, Gholamreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning-based system for detecting leishmaniasis in microscopic images</atitle><jtitle>BMC infectious diseases</jtitle><addtitle>BMC Infect Dis</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>48</spage><epage>48</epage><pages>48-48</pages><artnum>48</artnum><issn>1471-2334</issn><eissn>1471-2334</eissn><abstract>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis.
We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier.
A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages.
The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35022031</pmid><doi>10.1186/s12879-022-07029-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2334 |
ispartof | BMC infectious diseases, 2022-01, Vol.22 (1), p.48-48, Article 48 |
issn | 1471-2334 1471-2334 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Adaboost Algorithms Amastigotes Artificial Intelligence Biopsy Care and treatment Cutaneous leishmaniasis Diagnosis Feature extraction Humans Image classification Image processing Infectious diseases Laboratories Learning algorithms Leishmania Leishmaniasis Leishmaniasis - diagnosis Leishmaniasis, Cutaneous Machine Learning Macrophages Malaria Medical imaging Methods Microscopy, Medical Morphology Parasites Parasitic diseases Risk factors Vector-borne diseases Viola-Jones |
title | A machine learning-based system for detecting leishmaniasis in microscopic images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning-based%20system%20for%20detecting%20leishmaniasis%20in%20microscopic%20images&rft.jtitle=BMC%20infectious%20diseases&rft.au=Zare,%20Mojtaba&rft.date=2022-01-12&rft.volume=22&rft.issue=1&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.artnum=48&rft.issn=1471-2334&rft.eissn=1471-2334&rft_id=info:doi/10.1186/s12879-022-07029-7&rft_dat=%3Cgale_doaj_%3EA693699738%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620995603&rft_id=info:pmid/35022031&rft_galeid=A693699738&rfr_iscdi=true |