Loading…

A machine learning-based system for detecting leishmaniasis in microscopic images

Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. Ho...

Full description

Saved in:
Bibliographic Details
Published in:BMC infectious diseases 2022-01, Vol.22 (1), p.48-48, Article 48
Main Authors: Zare, Mojtaba, Akbarialiabad, Hossein, Parsaei, Hossein, Asgari, Qasem, Alinejad, Ali, Bahreini, Mohammad Saleh, Hosseini, Seyed Hossein, Ghofrani-Jahromi, Mohsen, Shahriarirad, Reza, Amirmoezzi, Yalda, Shahriarirad, Sepehr, Zeighami, Ali, Abdollahifard, Gholamreza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663
cites cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663
container_end_page 48
container_issue 1
container_start_page 48
container_title BMC infectious diseases
container_volume 22
creator Zare, Mojtaba
Akbarialiabad, Hossein
Parsaei, Hossein
Asgari, Qasem
Alinejad, Ali
Bahreini, Mohammad Saleh
Hosseini, Seyed Hossein
Ghofrani-Jahromi, Mohsen
Shahriarirad, Reza
Amirmoezzi, Yalda
Shahriarirad, Sepehr
Zeighami, Ali
Abdollahifard, Gholamreza
description Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis. We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier. A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages. The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.
doi_str_mv 10.1186/s12879-022-07029-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A693699738</galeid><doaj_id>oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e</doaj_id><sourcerecordid>A693699738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqXwB1igSGzKIsWv-LFBGlU8RqpU8dxad5ybjEeJXewMov8eT6eUDmKBvLB1_Z1z5etTVc8pOaNUy9eZMq1MQxhriCLMNOpBdUyFog3jXDy8dz6qnuS8IYQqzczj6oi3RUQ4Pa4-LuoJ3NoHrEeEFHwYmhVk7Op8nWec6j6musMZ3VyuCuPzeoLgIftc-1BP3qWYXbzyrvYTDJifVo96GDM-u91Pqq_v3n45_9BcXL5fni8uGieNmhvHqJRMMBRKtRqlM4QRMIiSc8OQo5TOdSvsetoL41YalO616iWABCElP6mWe98uwsZepdI9XdsI3t4UYhospNm7Ea3pispx6J0GoaFbtRJFseklQ80VFq83e6-r7WrCzmGYE4wHpoc3wa_tEH9YrVpBlCoGp7cGKX7fYp7t5LPDcYSAcZstk9S0QnDGCvryL3QTtymUURWKEWNaSfgfaoDyAB_6WPq6naldSMOlMYrrQp39gyqrw_IxMWDvS_1A8OpAUJgZf84DbHO2y8-f_p-9_HbIsj27S0NO2N_NjhK7C6vdh9WW3NmbsNrd0F7cn_qd5Hc6-S_KSeNP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620995603</pqid></control><display><type>article</type><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</creator><creatorcontrib>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</creatorcontrib><description>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis. We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier. A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages. The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</description><identifier>ISSN: 1471-2334</identifier><identifier>EISSN: 1471-2334</identifier><identifier>DOI: 10.1186/s12879-022-07029-7</identifier><identifier>PMID: 35022031</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Adaboost ; Algorithms ; Amastigotes ; Artificial Intelligence ; Biopsy ; Care and treatment ; Cutaneous leishmaniasis ; Diagnosis ; Feature extraction ; Humans ; Image classification ; Image processing ; Infectious diseases ; Laboratories ; Learning algorithms ; Leishmania ; Leishmaniasis ; Leishmaniasis - diagnosis ; Leishmaniasis, Cutaneous ; Machine Learning ; Macrophages ; Malaria ; Medical imaging ; Methods ; Microscopy, Medical ; Morphology ; Parasites ; Parasitic diseases ; Risk factors ; Vector-borne diseases ; Viola-Jones</subject><ispartof>BMC infectious diseases, 2022-01, Vol.22 (1), p.48-48, Article 48</ispartof><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</citedby><cites>FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2620995603?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35022031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zare, Mojtaba</creatorcontrib><creatorcontrib>Akbarialiabad, Hossein</creatorcontrib><creatorcontrib>Parsaei, Hossein</creatorcontrib><creatorcontrib>Asgari, Qasem</creatorcontrib><creatorcontrib>Alinejad, Ali</creatorcontrib><creatorcontrib>Bahreini, Mohammad Saleh</creatorcontrib><creatorcontrib>Hosseini, Seyed Hossein</creatorcontrib><creatorcontrib>Ghofrani-Jahromi, Mohsen</creatorcontrib><creatorcontrib>Shahriarirad, Reza</creatorcontrib><creatorcontrib>Amirmoezzi, Yalda</creatorcontrib><creatorcontrib>Shahriarirad, Sepehr</creatorcontrib><creatorcontrib>Zeighami, Ali</creatorcontrib><creatorcontrib>Abdollahifard, Gholamreza</creatorcontrib><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><title>BMC infectious diseases</title><addtitle>BMC Infect Dis</addtitle><description>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis. We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier. A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages. The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</description><subject>Adaboost</subject><subject>Algorithms</subject><subject>Amastigotes</subject><subject>Artificial Intelligence</subject><subject>Biopsy</subject><subject>Care and treatment</subject><subject>Cutaneous leishmaniasis</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Infectious diseases</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Leishmania</subject><subject>Leishmaniasis</subject><subject>Leishmaniasis - diagnosis</subject><subject>Leishmaniasis, Cutaneous</subject><subject>Machine Learning</subject><subject>Macrophages</subject><subject>Malaria</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Microscopy, Medical</subject><subject>Morphology</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Risk factors</subject><subject>Vector-borne diseases</subject><subject>Viola-Jones</subject><issn>1471-2334</issn><issn>1471-2334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktv1DAUhSMEoqXwB1igSGzKIsWv-LFBGlU8RqpU8dxad5ybjEeJXewMov8eT6eUDmKBvLB1_Z1z5etTVc8pOaNUy9eZMq1MQxhriCLMNOpBdUyFog3jXDy8dz6qnuS8IYQqzczj6oi3RUQ4Pa4-LuoJ3NoHrEeEFHwYmhVk7Op8nWec6j6musMZ3VyuCuPzeoLgIftc-1BP3qWYXbzyrvYTDJifVo96GDM-u91Pqq_v3n45_9BcXL5fni8uGieNmhvHqJRMMBRKtRqlM4QRMIiSc8OQo5TOdSvsetoL41YalO616iWABCElP6mWe98uwsZepdI9XdsI3t4UYhospNm7Ea3pispx6J0GoaFbtRJFseklQ80VFq83e6-r7WrCzmGYE4wHpoc3wa_tEH9YrVpBlCoGp7cGKX7fYp7t5LPDcYSAcZstk9S0QnDGCvryL3QTtymUURWKEWNaSfgfaoDyAB_6WPq6naldSMOlMYrrQp39gyqrw_IxMWDvS_1A8OpAUJgZf84DbHO2y8-f_p-9_HbIsj27S0NO2N_NjhK7C6vdh9WW3NmbsNrd0F7cn_qd5Hc6-S_KSeNP</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Zare, Mojtaba</creator><creator>Akbarialiabad, Hossein</creator><creator>Parsaei, Hossein</creator><creator>Asgari, Qasem</creator><creator>Alinejad, Ali</creator><creator>Bahreini, Mohammad Saleh</creator><creator>Hosseini, Seyed Hossein</creator><creator>Ghofrani-Jahromi, Mohsen</creator><creator>Shahriarirad, Reza</creator><creator>Amirmoezzi, Yalda</creator><creator>Shahriarirad, Sepehr</creator><creator>Zeighami, Ali</creator><creator>Abdollahifard, Gholamreza</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220112</creationdate><title>A machine learning-based system for detecting leishmaniasis in microscopic images</title><author>Zare, Mojtaba ; Akbarialiabad, Hossein ; Parsaei, Hossein ; Asgari, Qasem ; Alinejad, Ali ; Bahreini, Mohammad Saleh ; Hosseini, Seyed Hossein ; Ghofrani-Jahromi, Mohsen ; Shahriarirad, Reza ; Amirmoezzi, Yalda ; Shahriarirad, Sepehr ; Zeighami, Ali ; Abdollahifard, Gholamreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaboost</topic><topic>Algorithms</topic><topic>Amastigotes</topic><topic>Artificial Intelligence</topic><topic>Biopsy</topic><topic>Care and treatment</topic><topic>Cutaneous leishmaniasis</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Infectious diseases</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Leishmania</topic><topic>Leishmaniasis</topic><topic>Leishmaniasis - diagnosis</topic><topic>Leishmaniasis, Cutaneous</topic><topic>Machine Learning</topic><topic>Macrophages</topic><topic>Malaria</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Microscopy, Medical</topic><topic>Morphology</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Risk factors</topic><topic>Vector-borne diseases</topic><topic>Viola-Jones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zare, Mojtaba</creatorcontrib><creatorcontrib>Akbarialiabad, Hossein</creatorcontrib><creatorcontrib>Parsaei, Hossein</creatorcontrib><creatorcontrib>Asgari, Qasem</creatorcontrib><creatorcontrib>Alinejad, Ali</creatorcontrib><creatorcontrib>Bahreini, Mohammad Saleh</creatorcontrib><creatorcontrib>Hosseini, Seyed Hossein</creatorcontrib><creatorcontrib>Ghofrani-Jahromi, Mohsen</creatorcontrib><creatorcontrib>Shahriarirad, Reza</creatorcontrib><creatorcontrib>Amirmoezzi, Yalda</creatorcontrib><creatorcontrib>Shahriarirad, Sepehr</creatorcontrib><creatorcontrib>Zeighami, Ali</creatorcontrib><creatorcontrib>Abdollahifard, Gholamreza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>BMC infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zare, Mojtaba</au><au>Akbarialiabad, Hossein</au><au>Parsaei, Hossein</au><au>Asgari, Qasem</au><au>Alinejad, Ali</au><au>Bahreini, Mohammad Saleh</au><au>Hosseini, Seyed Hossein</au><au>Ghofrani-Jahromi, Mohsen</au><au>Shahriarirad, Reza</au><au>Amirmoezzi, Yalda</au><au>Shahriarirad, Sepehr</au><au>Zeighami, Ali</au><au>Abdollahifard, Gholamreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning-based system for detecting leishmaniasis in microscopic images</atitle><jtitle>BMC infectious diseases</jtitle><addtitle>BMC Infect Dis</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>48</spage><epage>48</epage><pages>48-48</pages><artnum>48</artnum><issn>1471-2334</issn><eissn>1471-2334</eissn><abstract>Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-consuming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic diagnosis of leishmaniasis. We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. The adaBoost technique was used to select the discriminate features and to train the classifier. A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishmania parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages. The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence might be used as an alternative for the current leishmanial diagnosis methods.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>35022031</pmid><doi>10.1186/s12879-022-07029-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2334
ispartof BMC infectious diseases, 2022-01, Vol.22 (1), p.48-48, Article 48
issn 1471-2334
1471-2334
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9d6aac3afc8a48adb56e4a6af62e837e
source Open Access: PubMed Central; Publicly Available Content Database
subjects Adaboost
Algorithms
Amastigotes
Artificial Intelligence
Biopsy
Care and treatment
Cutaneous leishmaniasis
Diagnosis
Feature extraction
Humans
Image classification
Image processing
Infectious diseases
Laboratories
Learning algorithms
Leishmania
Leishmaniasis
Leishmaniasis - diagnosis
Leishmaniasis, Cutaneous
Machine Learning
Macrophages
Malaria
Medical imaging
Methods
Microscopy, Medical
Morphology
Parasites
Parasitic diseases
Risk factors
Vector-borne diseases
Viola-Jones
title A machine learning-based system for detecting leishmaniasis in microscopic images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning-based%20system%20for%20detecting%20leishmaniasis%20in%20microscopic%20images&rft.jtitle=BMC%20infectious%20diseases&rft.au=Zare,%20Mojtaba&rft.date=2022-01-12&rft.volume=22&rft.issue=1&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.artnum=48&rft.issn=1471-2334&rft.eissn=1471-2334&rft_id=info:doi/10.1186/s12879-022-07029-7&rft_dat=%3Cgale_doaj_%3EA693699738%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c697t-c2166242e47758e6c9020a9ee63392e3e66ccdbedf1f49cb8a78f87f6aa6a4663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2620995603&rft_id=info:pmid/35022031&rft_galeid=A693699738&rfr_iscdi=true