Loading…
Novel Hydrocolloids Obtained from Mango ( Mangifera indica ) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics
Background: Hydrocolloids are ingredients used to improve the technological properties of products; currently, there is a growing demand from the food industry and consumers to use natural ingredients and reduce the environmental impact. Methods: This work evaluated the effect of pH on hydrocolloid...
Saved in:
Published in: | Gels 2022-06, Vol.8 (6), p.354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Hydrocolloids are ingredients used to improve the technological properties of products; currently, there is a growing demand from the food industry and consumers to use natural ingredients and reduce the environmental impact. Methods: This work evaluated the effect of pH on hydrocolloid extraction from the pulp, seed, and peel of mango (Mangifera indica) var. hilaza and their chemical, physicochemical, techno-functional, and structural properties. Results: The main component of the hydrocolloid was the carbohydrates for pulp (22.59%) and peel (24.05%), and the protein for seed (21.48%) was corroborated by NIR spectra and associated with the technological and functional properties. The solubility increases with the temperature presenting values higher than 75% at 80 °C; the swelling index was higher than 30%, while the water holding capacity was higher in samples with higher carbohydrate content (110−121%). Moreover, a higher content of total phenolic compounds (21.61 ± 0.39−51.77 ± 2.48 mg GAE/g) and antioxidant activity (≥193.82 μMol Trolox/g) was obtained. The pH of extraction changes the color parameters and microstructural properties. Conclusions: Novel ingredients from mango pulp, seed, and peel at different pH levels have technological and functional properties that are potential use in the food industry as an alternative to the development of microstructural products. |
---|---|
ISSN: | 2310-2861 2310-2861 |
DOI: | 10.3390/gels8060354 |