Loading…
Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outco...
Saved in:
Published in: | Microbiology spectrum 2023-06, Vol.11 (3), p.e0087323 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a457t-eb73bc8d48f781acf667e2993d7f544160012cff7efe300a54a9408b5bed0cc23 |
container_end_page | |
container_issue | 3 |
container_start_page | e0087323 |
container_title | Microbiology spectrum |
container_volume | 11 |
creator | Procario, Megan C Sexton, Jonathan Z Halligan, Benjamin S Imperiale, Michael J |
description | By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection.
BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV. |
doi_str_mv | 10.1128/spectrum.00873-23 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9d6bd1f08f3d4aa6b326f8018d3efb45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9d6bd1f08f3d4aa6b326f8018d3efb45</doaj_id><sourcerecordid>2811565978</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-eb73bc8d48f781acf667e2993d7f544160012cff7efe300a54a9408b5bed0cc23</originalsourceid><addsrcrecordid>eNp9kUtP3DAUha2KqiDKD-imypIFGfy2s0J01MJQEEjA2nL8GDxK4qmdIM2_xzCAYNOVLfue7957DgA_EJwhhOVxXjszpqmfQSgFqTH5AvYw4qyGtBE7H-674CDnFYQQIcgww9_ALhGIUcH4Hri4DcOyc_Xcdd1RdR6WD_U8DqMbxuoqmBSzietNdTrobpNDrqKvfv2tbmK3ib1-DGnK1WLwZZAQh-_gq9dddgev5z64__P7bn5eX16fLeanl7WmTIy1awVpjbRUeiGRNp5z4XDTECs8oxTxMig23gvnHYFQM6obCmXLWmehMZjsg8WWa6NeqXUKvU4bFXVQLw8xLZVOYzCdU43lrUUeSk8s1Zq3BHMvIZKWON9SVlgnW9Z6antnTdk76e4T9PPPEB7UMj4qBDFvirmFcPhKSPHf5PKo-pBNcVMPLk5ZYYkQ46wRspSibemzrzk5_94HQfWcqXrLVL1kqjApmtlWo3OP1SpOqUSR_yv4-XGj9xZvkZMnuxSvRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811565978</pqid></control><display><type>article</type><title>Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection</title><source>American Society for Microbiology (ASM) Journals</source><source>PubMed Central</source><creator>Procario, Megan C ; Sexton, Jonathan Z ; Halligan, Benjamin S ; Imperiale, Michael J</creator><contributor>Neumann, Donna M.</contributor><creatorcontrib>Procario, Megan C ; Sexton, Jonathan Z ; Halligan, Benjamin S ; Imperiale, Michael J ; Neumann, Donna M.</creatorcontrib><description>By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection.
BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.</description><identifier>ISSN: 2165-0497</identifier><identifier>EISSN: 2165-0497</identifier><identifier>DOI: 10.1128/spectrum.00873-23</identifier><identifier>PMID: 37154756</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Adult ; Antiviral Agents ; BK Virus ; BKPyV ; high-content microscopy ; Humans ; Microscopy ; polyomavirus ; Polyomavirus Infections ; Research Article ; single-cell infection ; Tumor Virus Infections ; Viral Proteins ; Virology</subject><ispartof>Microbiology spectrum, 2023-06, Vol.11 (3), p.e0087323</ispartof><rights>Copyright © 2023 Procario et al.</rights><rights>Copyright © 2023 Procario et al. 2023 Procario et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a457t-eb73bc8d48f781acf667e2993d7f544160012cff7efe300a54a9408b5bed0cc23</cites><orcidid>0000-0002-2501-2548 ; 0000-0003-1218-6458 ; 0000-0002-9244-5888 ; 0000-0002-7587-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/spectrum.00873-23$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/spectrum.00873-23$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,27903,27904,52729,52730,52731,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37154756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neumann, Donna M.</contributor><creatorcontrib>Procario, Megan C</creatorcontrib><creatorcontrib>Sexton, Jonathan Z</creatorcontrib><creatorcontrib>Halligan, Benjamin S</creatorcontrib><creatorcontrib>Imperiale, Michael J</creatorcontrib><title>Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection</title><title>Microbiology spectrum</title><addtitle>Microbiol Spectr</addtitle><addtitle>Microbiol Spectr</addtitle><description>By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection.
BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.</description><subject>Adult</subject><subject>Antiviral Agents</subject><subject>BK Virus</subject><subject>BKPyV</subject><subject>high-content microscopy</subject><subject>Humans</subject><subject>Microscopy</subject><subject>polyomavirus</subject><subject>Polyomavirus Infections</subject><subject>Research Article</subject><subject>single-cell infection</subject><subject>Tumor Virus Infections</subject><subject>Viral Proteins</subject><subject>Virology</subject><issn>2165-0497</issn><issn>2165-0497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtP3DAUha2KqiDKD-imypIFGfy2s0J01MJQEEjA2nL8GDxK4qmdIM2_xzCAYNOVLfue7957DgA_EJwhhOVxXjszpqmfQSgFqTH5AvYw4qyGtBE7H-674CDnFYQQIcgww9_ALhGIUcH4Hri4DcOyc_Xcdd1RdR6WD_U8DqMbxuoqmBSzietNdTrobpNDrqKvfv2tbmK3ib1-DGnK1WLwZZAQh-_gq9dddgev5z64__P7bn5eX16fLeanl7WmTIy1awVpjbRUeiGRNp5z4XDTECs8oxTxMig23gvnHYFQM6obCmXLWmehMZjsg8WWa6NeqXUKvU4bFXVQLw8xLZVOYzCdU43lrUUeSk8s1Zq3BHMvIZKWON9SVlgnW9Z6antnTdk76e4T9PPPEB7UMj4qBDFvirmFcPhKSPHf5PKo-pBNcVMPLk5ZYYkQ46wRspSibemzrzk5_94HQfWcqXrLVL1kqjApmtlWo3OP1SpOqUSR_yv4-XGj9xZvkZMnuxSvRw</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Procario, Megan C</creator><creator>Sexton, Jonathan Z</creator><creator>Halligan, Benjamin S</creator><creator>Imperiale, Michael J</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2501-2548</orcidid><orcidid>https://orcid.org/0000-0003-1218-6458</orcidid><orcidid>https://orcid.org/0000-0002-9244-5888</orcidid><orcidid>https://orcid.org/0000-0002-7587-2597</orcidid></search><sort><creationdate>20230615</creationdate><title>Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection</title><author>Procario, Megan C ; Sexton, Jonathan Z ; Halligan, Benjamin S ; Imperiale, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-eb73bc8d48f781acf667e2993d7f544160012cff7efe300a54a9408b5bed0cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adult</topic><topic>Antiviral Agents</topic><topic>BK Virus</topic><topic>BKPyV</topic><topic>high-content microscopy</topic><topic>Humans</topic><topic>Microscopy</topic><topic>polyomavirus</topic><topic>Polyomavirus Infections</topic><topic>Research Article</topic><topic>single-cell infection</topic><topic>Tumor Virus Infections</topic><topic>Viral Proteins</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Procario, Megan C</creatorcontrib><creatorcontrib>Sexton, Jonathan Z</creatorcontrib><creatorcontrib>Halligan, Benjamin S</creatorcontrib><creatorcontrib>Imperiale, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microbiology spectrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Procario, Megan C</au><au>Sexton, Jonathan Z</au><au>Halligan, Benjamin S</au><au>Imperiale, Michael J</au><au>Neumann, Donna M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection</atitle><jtitle>Microbiology spectrum</jtitle><stitle>Microbiol Spectr</stitle><addtitle>Microbiol Spectr</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>e0087323</spage><pages>e0087323-</pages><issn>2165-0497</issn><eissn>2165-0497</eissn><abstract>By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection.
BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>37154756</pmid><doi>10.1128/spectrum.00873-23</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2501-2548</orcidid><orcidid>https://orcid.org/0000-0003-1218-6458</orcidid><orcidid>https://orcid.org/0000-0002-9244-5888</orcidid><orcidid>https://orcid.org/0000-0002-7587-2597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2165-0497 |
ispartof | Microbiology spectrum, 2023-06, Vol.11 (3), p.e0087323 |
issn | 2165-0497 2165-0497 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9d6bd1f08f3d4aa6b326f8018d3efb45 |
source | American Society for Microbiology (ASM) Journals; PubMed Central |
subjects | Adult Antiviral Agents BK Virus BKPyV high-content microscopy Humans Microscopy polyomavirus Polyomavirus Infections Research Article single-cell infection Tumor Virus Infections Viral Proteins Virology |
title | Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell,%20High-Content%20Microscopy%20Analysis%20of%20BK%20Polyomavirus%20Infection&rft.jtitle=Microbiology%20spectrum&rft.au=Procario,%20Megan%20C&rft.date=2023-06-15&rft.volume=11&rft.issue=3&rft.spage=e0087323&rft.pages=e0087323-&rft.issn=2165-0497&rft.eissn=2165-0497&rft_id=info:doi/10.1128/spectrum.00873-23&rft_dat=%3Cproquest_doaj_%3E2811565978%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a457t-eb73bc8d48f781acf667e2993d7f544160012cff7efe300a54a9408b5bed0cc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2811565978&rft_id=info:pmid/37154756&rfr_iscdi=true |