Loading…

Enhancement of mechanical and corrosion resistance properties of electrodeposited Ni–P–TiC composite coatings

In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni–P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L −1 ) were co-electrodeposited in the Ni–P m...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-03, Vol.11 (1), p.5327-16, Article 5327
Main Authors: Fayyaz, Osama, Khan, Adnan, Shakoor, R. A., Hasan, Anwarul, Yusuf, Moinuddin M., Montemor, M. F., Rasul, Shahid, Khan, Kashif, Faruque, M. R. I., Okonkwo, Paul C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni–P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L −1 ) were co-electrodeposited in the Ni–P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV 100 ) at the concentration of 1.5 g L −1 . Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni–P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L −1 , which can be ascribed to a reduction in the active area of the Ni–P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni–P–TiC composite coatings suggest their potential applications in many industrial applications.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-84716-6