Loadingā€¦

Overexpression of full-length cholesteryl ester transfer protein in SW872 cells reduces lipid accumulation

Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpresse...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2015-03, Vol.56 (3), p.515-525
Main Authors: Izem, Lahoucine, Greene, Diane J., Bialkowska, Katarzyna, Morton, Richard E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpressed full-length CETP in SW872 cells. These CETP+ cells had several-fold higher intracellular CETP and accumulated 50% less TG due to a 26% decrease in TG synthesis and 2.5-fold higher TG turnover rate. Reduced TG synthesis was due to decreased fatty acid uptake and impaired conversion of diglyceride to TG even though diacylglycerol acyltransferase activity was normal. Sterol-regulatory element binding protein 1 mRNA levels were normal, and although PPARĪ³ expression was reduced, the expression of several of its target genes including adipocyte triglyceride lipase, FASN, and APOE was normal. CETP+ cells contained smaller lipid droplets, consistent with their higher levels of perilipin protein family (PLIN) 3 compared with PLIN1 and PLIN2. Intracellular CETP was mostly associated with the endoplasmic reticulum, although CETP near lipid droplets poorly colocalized with this membrane. A small pool of CETP resided in the cytoplasm, and a subfraction coisolated with lipid droplets. These data show that overexpression of full-length CETP disrupts lipid homeostasis resulting in the formation of smaller, more metabolically active lipid droplets.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.m053678