Loading…

The role of acoustics within the sensory landscape of coral larval settlement

Recruitment of coral larvae on reefs is crucial for individual survival and ecosystem integrity alike. Coral larvae can detect and respond to a wide range of biotic and abiotic cues, including acoustic cues, to locate suitable sites for settlement and metamorphosis. However, the acoustic ecology of...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in Marine Science 2023-05, Vol.10
Main Authors: Josh W. Pysanczyn, Elizabeth A. Williams, Emelie Brodrick, Daniel Robert, Jamie Craggs, Kristen L. Marhaver, Stephen D. Simpson
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recruitment of coral larvae on reefs is crucial for individual survival and ecosystem integrity alike. Coral larvae can detect and respond to a wide range of biotic and abiotic cues, including acoustic cues, to locate suitable sites for settlement and metamorphosis. However, the acoustic ecology of coral larvae, including how they perceive auditory cues, remains poorly understood. In this mini-review we consider both ex situ physiology and behavior, and in situ ecological and behavioral studies, to first provide an updated overview of the abiotic and biotic cues used by coral larvae to guide settlement. We then explore in detail the use of acoustic cues and the current literature on behavioral responses to acoustic stimuli. Finally, we discuss gaps in our understanding of the mechanisms by which coral larvae detect acoustic cues, highlighting a novel application of technology to explore these sensory capabilities. We also address how larval phonotaxis, i.e., the ability to orient to a sound cue, can be applied to coral reef conservation. Current research suggests that acoustic cues are likely used at small spatial scales, and that coral larvae may have directional acoustic sensitivity enabling phonotactic behavior. Recruitment of coral larvae on reefs is significantly influenced by habitat-specific soundscape variation and likely affected by anthropogenic disturbance. We propose a novel application of the remote sensing technology, micro-scanning laser Doppler vibrometry (LDV), to quantify the micromechanical responses of putative acoustically sensitive epidermal microstructures. We then highlight the potential for incorporation of acoustic enrichment techniques in coral reef conservation and restoration interventions.
ISSN:2296-7745
DOI:10.3389/fmars.2023.1111599