Loading…

Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy

Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. These challenging experiments are c...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2021-04, Vol.11 (2), p.021007, Article 021007
Main Authors: Benelajla, Meryem, Kammann, Elena, Urbaszek, Bernhard, Karrai, Khaled
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73
cites cdi_FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73
container_end_page
container_issue 2
container_start_page 021007
container_title Physical review. X
container_volume 11
creator Benelajla, Meryem
Kammann, Elena
Urbaszek, Bernhard
Karrai, Khaled
description Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. These challenging experiments are carried out under linear cross-polarization conditions, rejecting laser light from the detector. In this work, we uncover the physical mechanisms that are at the origin of the yet-unexplained high polarization rejection ratio which makes these measurements possible. We show in both experiment and theory that the use of a reflecting surface (i.e., the beam splitter and mirrors) placed between the polarizer and analyzer in combination with a confocal arrangement explains the giant cross-polarization extinction ratio of108and beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity “hole” in the reflected beam under cross-polarization conditions. We interpret this hole as a manifestation of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This result implies that this topological effect is amplified here from the usually observed nanometer to the micrometer scale due to our cross-polarization dark-field methods. We confirm these experimental findings for a large variety of commercially available mirrors and polarization components, allowing their practical implementation in many experiments.
doi_str_mv 10.1103/PhysRevX.11.021007
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9dab703d5ae4437498a0f7877645def9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9dab703d5ae4437498a0f7877645def9</doaj_id><sourcerecordid>2549700410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73</originalsourceid><addsrcrecordid>eNpNUVtLwzAUDqLgmPsDPhV87jy5tGkeZUwdTDZEwbeQ5jIztmYmnTh_va1T8byc-3cuH0KXGMYYA71evh7So31_6bwxEAzAT9CA4BJySqE6_Wefo1FKa-ikBMw4H6Bl3-y12mSL6Fe-SVlw2fSjjXZrs0kMKeXLsFHRf6rWh6ZP-UZ_m77JJqFxoW9-8Lqr1WF3uEBnTm2SHf3oIXq-nT5N7vP54m42uZnnmlZFm2tX2AoTZg2UtaDaCO4sKEGoUQTjinJcGaxxUYGiwgpXkLq0lLBaFQCG0yGaHXFNUGu5i36r4kEG5eV3IMSVVLH1emOlMKrmQE2hLGOUM1EpcLzivGSFsU50WFdHrF0Mb3ubWrkO-9h060tSMMEBWPfnISLHqv7UFK37m4pB9kTIXyI6Tx6JoF9WPnyZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549700410</pqid></control><display><type>article</type><title>Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy</title><source>Publicly Available Content Database</source><creator>Benelajla, Meryem ; Kammann, Elena ; Urbaszek, Bernhard ; Karrai, Khaled</creator><creatorcontrib>Benelajla, Meryem ; Kammann, Elena ; Urbaszek, Bernhard ; Karrai, Khaled</creatorcontrib><description>Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. These challenging experiments are carried out under linear cross-polarization conditions, rejecting laser light from the detector. In this work, we uncover the physical mechanisms that are at the origin of the yet-unexplained high polarization rejection ratio which makes these measurements possible. We show in both experiment and theory that the use of a reflecting surface (i.e., the beam splitter and mirrors) placed between the polarizer and analyzer in combination with a confocal arrangement explains the giant cross-polarization extinction ratio of108and beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity “hole” in the reflected beam under cross-polarization conditions. We interpret this hole as a manifestation of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This result implies that this topological effect is amplified here from the usually observed nanometer to the micrometer scale due to our cross-polarization dark-field methods. We confirm these experimental findings for a large variety of commercially available mirrors and polarization components, allowing their practical implementation in many experiments.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.11.021007</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Experiments ; Extinction ; Fluorescence ; Gaussian beams (optics) ; Helicity ; Lasers ; Light ; Light beams ; Light emission ; Microscopes ; Microscopy ; Optical properties ; Physics ; Pinholes ; Polarization ; Polarizers ; Quantum optics ; Solid state physics</subject><ispartof>Physical review. X, 2021-04, Vol.11 (2), p.021007, Article 021007</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73</citedby><cites>FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73</cites><orcidid>0000-0003-0226-7983 ; 0000-0001-7444-5289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2549700410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Benelajla, Meryem</creatorcontrib><creatorcontrib>Kammann, Elena</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>Karrai, Khaled</creatorcontrib><title>Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy</title><title>Physical review. X</title><description>Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. These challenging experiments are carried out under linear cross-polarization conditions, rejecting laser light from the detector. In this work, we uncover the physical mechanisms that are at the origin of the yet-unexplained high polarization rejection ratio which makes these measurements possible. We show in both experiment and theory that the use of a reflecting surface (i.e., the beam splitter and mirrors) placed between the polarizer and analyzer in combination with a confocal arrangement explains the giant cross-polarization extinction ratio of108and beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity “hole” in the reflected beam under cross-polarization conditions. We interpret this hole as a manifestation of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This result implies that this topological effect is amplified here from the usually observed nanometer to the micrometer scale due to our cross-polarization dark-field methods. We confirm these experimental findings for a large variety of commercially available mirrors and polarization components, allowing their practical implementation in many experiments.</description><subject>Experiments</subject><subject>Extinction</subject><subject>Fluorescence</subject><subject>Gaussian beams (optics)</subject><subject>Helicity</subject><subject>Lasers</subject><subject>Light</subject><subject>Light beams</subject><subject>Light emission</subject><subject>Microscopes</subject><subject>Microscopy</subject><subject>Optical properties</subject><subject>Physics</subject><subject>Pinholes</subject><subject>Polarization</subject><subject>Polarizers</subject><subject>Quantum optics</subject><subject>Solid state physics</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVtLwzAUDqLgmPsDPhV87jy5tGkeZUwdTDZEwbeQ5jIztmYmnTh_va1T8byc-3cuH0KXGMYYA71evh7So31_6bwxEAzAT9CA4BJySqE6_Wefo1FKa-ikBMw4H6Bl3-y12mSL6Fe-SVlw2fSjjXZrs0kMKeXLsFHRf6rWh6ZP-UZ_m77JJqFxoW9-8Lqr1WF3uEBnTm2SHf3oIXq-nT5N7vP54m42uZnnmlZFm2tX2AoTZg2UtaDaCO4sKEGoUQTjinJcGaxxUYGiwgpXkLq0lLBaFQCG0yGaHXFNUGu5i36r4kEG5eV3IMSVVLH1emOlMKrmQE2hLGOUM1EpcLzivGSFsU50WFdHrF0Mb3ubWrkO-9h060tSMMEBWPfnISLHqv7UFK37m4pB9kTIXyI6Tx6JoF9WPnyZ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Benelajla, Meryem</creator><creator>Kammann, Elena</creator><creator>Urbaszek, Bernhard</creator><creator>Karrai, Khaled</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0001-7444-5289</orcidid></search><sort><creationdate>20210401</creationdate><title>Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy</title><author>Benelajla, Meryem ; Kammann, Elena ; Urbaszek, Bernhard ; Karrai, Khaled</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Experiments</topic><topic>Extinction</topic><topic>Fluorescence</topic><topic>Gaussian beams (optics)</topic><topic>Helicity</topic><topic>Lasers</topic><topic>Light</topic><topic>Light beams</topic><topic>Light emission</topic><topic>Microscopes</topic><topic>Microscopy</topic><topic>Optical properties</topic><topic>Physics</topic><topic>Pinholes</topic><topic>Polarization</topic><topic>Polarizers</topic><topic>Quantum optics</topic><topic>Solid state physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benelajla, Meryem</creatorcontrib><creatorcontrib>Kammann, Elena</creatorcontrib><creatorcontrib>Urbaszek, Bernhard</creatorcontrib><creatorcontrib>Karrai, Khaled</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benelajla, Meryem</au><au>Kammann, Elena</au><au>Urbaszek, Bernhard</au><au>Karrai, Khaled</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy</atitle><jtitle>Physical review. X</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><spage>021007</spage><pages>021007-</pages><artnum>021007</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>Confocal microscopy is an essential imaging tool for biological systems, solid-state physics and nanophotonics. Using confocal microscopes allows performing resonant fluorescence experiments, where the emitted light has the same wavelength as the excitation laser. These challenging experiments are carried out under linear cross-polarization conditions, rejecting laser light from the detector. In this work, we uncover the physical mechanisms that are at the origin of the yet-unexplained high polarization rejection ratio which makes these measurements possible. We show in both experiment and theory that the use of a reflecting surface (i.e., the beam splitter and mirrors) placed between the polarizer and analyzer in combination with a confocal arrangement explains the giant cross-polarization extinction ratio of108and beyond. We map the modal transformation of the polarized optical Gaussian beam. We find an intensity “hole” in the reflected beam under cross-polarization conditions. We interpret this hole as a manifestation of the Imbert-Fedorov effect, which deviates the beam depending on its polarization helicity. This result implies that this topological effect is amplified here from the usually observed nanometer to the micrometer scale due to our cross-polarization dark-field methods. We confirm these experimental findings for a large variety of commercially available mirrors and polarization components, allowing their practical implementation in many experiments.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.11.021007</doi><orcidid>https://orcid.org/0000-0003-0226-7983</orcidid><orcidid>https://orcid.org/0000-0001-7444-5289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2021-04, Vol.11 (2), p.021007, Article 021007
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9dab703d5ae4437498a0f7877645def9
source Publicly Available Content Database
subjects Experiments
Extinction
Fluorescence
Gaussian beams (optics)
Helicity
Lasers
Light
Light beams
Light emission
Microscopes
Microscopy
Optical properties
Physics
Pinholes
Polarization
Polarizers
Quantum optics
Solid state physics
title Physical Origins of Extreme Cross-Polarization Extinction in Confocal Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Origins%20of%20Extreme%20Cross-Polarization%20Extinction%20in%20Confocal%20Microscopy&rft.jtitle=Physical%20review.%20X&rft.au=Benelajla,%20Meryem&rft.date=2021-04-01&rft.volume=11&rft.issue=2&rft.spage=021007&rft.pages=021007-&rft.artnum=021007&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.11.021007&rft_dat=%3Cproquest_doaj_%3E2549700410%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-cf5e8124ed06b93cd97fe0a923da21183718d1c1580a39e9f52b6e324ba500d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2549700410&rft_id=info:pmid/&rfr_iscdi=true