Loading…

Adaptive Node Clustering for Underwater Sensor Networks

Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4514
Main Authors: Khan, Muhammad Fahad, Bibi, Muqaddas, Aadil, Farhan, Lee, Jong-Weon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23
cites cdi_FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23
container_end_page
container_issue 13
container_start_page 4514
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Khan, Muhammad Fahad
Bibi, Muqaddas
Aadil, Farhan
Lee, Jong-Weon
description Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communication is challenging. In this paper, we proposed a sensor node clustering technique for UWSNs named as adaptive node clustering technique (ANC-UWSNs). It uses a dragonfly optimization (DFO) algorithm for selecting ideal measure of clusters needed for routing. The DFO algorithm is inspired by the swarming behavior of dragons. The proposed methodology correlates with other algorithms, for example the ant colony optimizer (ACO), comprehensive learning particle swarm optimizer (CLPSO), gray wolf optimizer (GWO) and moth flame optimizer (MFO). Grid size, transmission range and nodes density are used in a performance matrix, which varies during simulation. Results show that DFO outperform the other algorithms. It produces a higher optimized number of clusters as compared to other algorithms and hence optimizes overall routing and increases the life span of a network.
doi_str_mv 10.3390/s21134514
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9dcd28971134440f9b03ffcbd7de93a6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9dcd28971134440f9b03ffcbd7de93a6</doaj_id><sourcerecordid>2548400775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23</originalsourceid><addsrcrecordid>eNpVkU9PwzAMxSMEYjA48A16hEMhcdIkvSChiX8SGgfgHKWJOzq6ZiTdEN-ejiEEJ1vPTz9bfoScMHrOeUkvEjDGRcHEDjlgAkSuAejun35EDlOaUwqcc71PRlwALUUhD4i68nbZN2vMpsFjNmlXqcfYdLOsDjF76TzGDzso2RN2aVCm2H-E-JaOyF5t24THP3VMXm6unyd3-cPj7f3k6iF3guk-96xwFhEseKlrkOBkUbkKqZTMloJ5WYCkFnRNAVldViXjmheKc8mlcsDH5H7L9cHOzTI2Cxs_TbCN-RZCnBkb-8a1aErvPOhSbX4hBB1glNe1q7zyWHIrB9bllrVcVQv0Drs-2vYf9P-ka17NLKyNBsUk3Rxz-gOI4X2FqTeLJjlsW9thWCUDhdCCUqWKwXq2tboYUopY_65h1GxCM7-h8S8lb4cC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548400775</pqid></control><display><type>article</type><title>Adaptive Node Clustering for Underwater Sensor Networks</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Khan, Muhammad Fahad ; Bibi, Muqaddas ; Aadil, Farhan ; Lee, Jong-Weon</creator><creatorcontrib>Khan, Muhammad Fahad ; Bibi, Muqaddas ; Aadil, Farhan ; Lee, Jong-Weon</creatorcontrib><description>Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communication is challenging. In this paper, we proposed a sensor node clustering technique for UWSNs named as adaptive node clustering technique (ANC-UWSNs). It uses a dragonfly optimization (DFO) algorithm for selecting ideal measure of clusters needed for routing. The DFO algorithm is inspired by the swarming behavior of dragons. The proposed methodology correlates with other algorithms, for example the ant colony optimizer (ACO), comprehensive learning particle swarm optimizer (CLPSO), gray wolf optimizer (GWO) and moth flame optimizer (MFO). Grid size, transmission range and nodes density are used in a performance matrix, which varies during simulation. Results show that DFO outperform the other algorithms. It produces a higher optimized number of clusters as compared to other algorithms and hence optimizes overall routing and increases the life span of a network.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21134514</identifier><identifier>PMID: 34209456</identifier><language>eng</language><publisher>MDPI</publisher><subject>adaptive node clustering technique ; dragonfly optimization ; nodes clustering ; optimized routing ; transmission range ; underwater sensor networks</subject><ispartof>Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4514</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23</citedby><cites>FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23</cites><orcidid>0000-0001-8737-2154 ; 0000-0001-9425-2601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271602/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271602/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids></links><search><creatorcontrib>Khan, Muhammad Fahad</creatorcontrib><creatorcontrib>Bibi, Muqaddas</creatorcontrib><creatorcontrib>Aadil, Farhan</creatorcontrib><creatorcontrib>Lee, Jong-Weon</creatorcontrib><title>Adaptive Node Clustering for Underwater Sensor Networks</title><title>Sensors (Basel, Switzerland)</title><description>Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communication is challenging. In this paper, we proposed a sensor node clustering technique for UWSNs named as adaptive node clustering technique (ANC-UWSNs). It uses a dragonfly optimization (DFO) algorithm for selecting ideal measure of clusters needed for routing. The DFO algorithm is inspired by the swarming behavior of dragons. The proposed methodology correlates with other algorithms, for example the ant colony optimizer (ACO), comprehensive learning particle swarm optimizer (CLPSO), gray wolf optimizer (GWO) and moth flame optimizer (MFO). Grid size, transmission range and nodes density are used in a performance matrix, which varies during simulation. Results show that DFO outperform the other algorithms. It produces a higher optimized number of clusters as compared to other algorithms and hence optimizes overall routing and increases the life span of a network.</description><subject>adaptive node clustering technique</subject><subject>dragonfly optimization</subject><subject>nodes clustering</subject><subject>optimized routing</subject><subject>transmission range</subject><subject>underwater sensor networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU9PwzAMxSMEYjA48A16hEMhcdIkvSChiX8SGgfgHKWJOzq6ZiTdEN-ejiEEJ1vPTz9bfoScMHrOeUkvEjDGRcHEDjlgAkSuAejun35EDlOaUwqcc71PRlwALUUhD4i68nbZN2vMpsFjNmlXqcfYdLOsDjF76TzGDzso2RN2aVCm2H-E-JaOyF5t24THP3VMXm6unyd3-cPj7f3k6iF3guk-96xwFhEseKlrkOBkUbkKqZTMloJ5WYCkFnRNAVldViXjmheKc8mlcsDH5H7L9cHOzTI2Cxs_TbCN-RZCnBkb-8a1aErvPOhSbX4hBB1glNe1q7zyWHIrB9bllrVcVQv0Drs-2vYf9P-ka17NLKyNBsUk3Rxz-gOI4X2FqTeLJjlsW9thWCUDhdCCUqWKwXq2tboYUopY_65h1GxCM7-h8S8lb4cC</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Khan, Muhammad Fahad</creator><creator>Bibi, Muqaddas</creator><creator>Aadil, Farhan</creator><creator>Lee, Jong-Weon</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8737-2154</orcidid><orcidid>https://orcid.org/0000-0001-9425-2601</orcidid></search><sort><creationdate>20210630</creationdate><title>Adaptive Node Clustering for Underwater Sensor Networks</title><author>Khan, Muhammad Fahad ; Bibi, Muqaddas ; Aadil, Farhan ; Lee, Jong-Weon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adaptive node clustering technique</topic><topic>dragonfly optimization</topic><topic>nodes clustering</topic><topic>optimized routing</topic><topic>transmission range</topic><topic>underwater sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Muhammad Fahad</creatorcontrib><creatorcontrib>Bibi, Muqaddas</creatorcontrib><creatorcontrib>Aadil, Farhan</creatorcontrib><creatorcontrib>Lee, Jong-Weon</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Muhammad Fahad</au><au>Bibi, Muqaddas</au><au>Aadil, Farhan</au><au>Lee, Jong-Weon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Node Clustering for Underwater Sensor Networks</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>21</volume><issue>13</issue><spage>4514</spage><pages>4514-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Monitoring of an underwater environment and communication is essential for many applications, such as sea habitat monitoring, offshore investigation and mineral exploration, but due to underwater current, low bandwidth, high water pressure, propagation delay and error probability, underwater communication is challenging. In this paper, we proposed a sensor node clustering technique for UWSNs named as adaptive node clustering technique (ANC-UWSNs). It uses a dragonfly optimization (DFO) algorithm for selecting ideal measure of clusters needed for routing. The DFO algorithm is inspired by the swarming behavior of dragons. The proposed methodology correlates with other algorithms, for example the ant colony optimizer (ACO), comprehensive learning particle swarm optimizer (CLPSO), gray wolf optimizer (GWO) and moth flame optimizer (MFO). Grid size, transmission range and nodes density are used in a performance matrix, which varies during simulation. Results show that DFO outperform the other algorithms. It produces a higher optimized number of clusters as compared to other algorithms and hence optimizes overall routing and increases the life span of a network.</abstract><pub>MDPI</pub><pmid>34209456</pmid><doi>10.3390/s21134514</doi><orcidid>https://orcid.org/0000-0001-8737-2154</orcidid><orcidid>https://orcid.org/0000-0001-9425-2601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-06, Vol.21 (13), p.4514
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9dcd28971134440f9b03ffcbd7de93a6
source Publicly Available Content (ProQuest); PubMed Central
subjects adaptive node clustering technique
dragonfly optimization
nodes clustering
optimized routing
transmission range
underwater sensor networks
title Adaptive Node Clustering for Underwater Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Node%20Clustering%20for%20Underwater%20Sensor%20Networks&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Khan,%20Muhammad%20Fahad&rft.date=2021-06-30&rft.volume=21&rft.issue=13&rft.spage=4514&rft.pages=4514-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21134514&rft_dat=%3Cproquest_doaj_%3E2548400775%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-d15caee2a2d68f262c65bcbe0661a941d65260a28f02e1f9b9138357336367c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548400775&rft_id=info:pmid/34209456&rfr_iscdi=true