Loading…
Enhancing Security in Social Networks through Machine Learning: Detecting and Mitigating Sybil Attacks with SybilSocNet
This study contributes to the Sybil node-detecting algorithm in online social networks (OSNs). As major communication platforms, online social networks are significantly guarded from malicious activity. A thorough literature review identified various detection and prevention Sybil attack algorithms....
Saved in:
Published in: | Algorithms 2024-10, Vol.17 (10), p.442 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study contributes to the Sybil node-detecting algorithm in online social networks (OSNs). As major communication platforms, online social networks are significantly guarded from malicious activity. A thorough literature review identified various detection and prevention Sybil attack algorithms. An additional exploration of distinct reputation systems and their practical applications led to this study’s discovery of machine learning algorithms, i.e., the KNN, support vector machine, and random forest algorithms, as part of our SybilSocNet. This study details the data-cleansing process for the employed dataset for optimizing the computational demands required to train machine learning algorithms, achieved through dataset partitioning. Such a process led to an explanation and analysis of our conducted experiments and comparing their results. The experiments demonstrated the algorithm’s ability to detect Sybil nodes in OSNs (99.9% accuracy in SVM, 99.6% in random forest, and 97% in KNN algorithms), and we propose future research opportunities. |
---|---|
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a17100442 |