Loading…

Spatiotemporally resolved metabolomics and isotope tracing reveal CNS drug targets

Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvo...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmaceutica Sinica. B 2023-04, Vol.13 (4), p.1699-1710
Main Authors: Jin, Bo, Pang, Xuechao, Zang, Qingce, Ga, Man, Xu, Jing, Luo, Zhigang, Zhang, Ruiping, Shi, Jiangong, He, Jiuming, Abliz, Zeper
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deconvolution of potential drug targets of the central nervous system (CNS) is particularly challenging because of the complicated structure and function of the brain. Here, a spatiotemporally resolved metabolomics and isotope tracing strategy was proposed and demonstrated to be powerful for deconvoluting and localizing potential targets of CNS drugs by using ambient mass spectrometry imaging. This strategy can map various substances including exogenous drugs, isotopically labeled metabolites, and various types of endogenous metabolites in the brain tissue sections to illustrate their microregional distribution pattern in the brain and locate drug action-related metabolic nodes and pathways. The strategy revealed that the sedative-hypnotic drug candidate YZG-331 was prominently distributed in the pineal gland and entered the thalamus and hypothalamus in relatively small amounts, and can increase glutamate decarboxylase activity to elevate γ-aminobutyric acid (GABA) levels in the hypothalamus, agonize organic cation transporter 3 to release extracellular histamine into peripheral circulation. These findings emphasize the promising capability of spatiotemporally resolved metabolomics and isotope tracing to help elucidate the multiple targets and the mechanisms of action of CNS drugs. A spatiotemporally resolved metabolomics and isotope tracing strategy has been proposed and validated for deconvoluting and localizing multi-targets of central nervous system drugs by ambient mass spectrometry imaging. [Display omitted]
ISSN:2211-3835
2211-3843
DOI:10.1016/j.apsb.2022.11.011