Loading…
Decadal Prediction of the Summer Extreme Precipitation over Southern China
The decadal variability of the summer extreme precipitation over southern China (EPSC) is remarkable, especially for the significant decadal enhancement after the 1990s. The study documented that the summer sea surface temperature (SST) over the North Atlantic and spring sea ice concentration (SIC)...
Saved in:
Published in: | Atmosphere 2023-03, Vol.14 (3), p.595 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decadal variability of the summer extreme precipitation over southern China (EPSC) is remarkable, especially for the significant decadal enhancement after the 1990s. The study documented that the summer sea surface temperature (SST) over the North Atlantic and spring sea ice concentration (SIC) over the East Siberian Sea can significantly affect the EPSC. The summer SST over the North Atlantic influences the low-pressure cyclone in the western Pacific by modulating the SST over the tropical Pacific, thus affecting EPSC. A decrease in the SIC of the East Siberian Sea induces a negative Arctic Oscillation, which induces the increased SST over northwest Pacific and the anomalous cyclone over there, in turn, affecting EPSC. Both predictors have a quasi-period of 10–14 years, which provides useful predictive signals for EPSC. The leading 7-year SST and the leading 5-year SIC are chosen to establish the prediction model based on the decadal increment method, which can well predict the EPSC, especially for the shift in the early 1990s. These results provide a clue to the limited predictability of decadal-scale extreme climate events. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14030595 |