Loading…

Electronic structure and optical properties of HgSe

We have performed the density functional theory calculations of mercury selenide compound using the plane-wave pseudo-potential (PWPP) method within the generalized gradient approximation to investigate the electronic structure and dielectric response of this compound in its zinc blende phase. The c...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor physics, quantum electronics, and optoelectronics quantum electronics, and optoelectronics, 2018-10, Vol.21 (3), p.288-293
Main Author: Akinlami, J. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have performed the density functional theory calculations of mercury selenide compound using the plane-wave pseudo-potential (PWPP) method within the generalized gradient approximation to investigate the electronic structure and dielectric response of this compound in its zinc blende phase. The calculated lattice and volume parameters are in consonance with other experimental and theoretical works. The electronic structure of the compound showed that mercury selenide exhibited a semi-metallic property with a negligible direct band gap of about 0 eV at high symmetry gamma-point. Real and imaginary parts of dielectric function as a function of photon energy have been also obtained.
ISSN:1560-8034
1605-6582
DOI:10.15407/spqeo21.03.288