Loading…

Visualizing statistical significance of disease clusters using cartograms

Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps...

Full description

Saved in:
Bibliographic Details
Published in:International journal of health geographics 2017-05, Vol.16 (1), p.19-19, Article 19
Main Authors: Kronenfeld, Barry J, Wong, David W S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923
cites cdi_FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923
container_end_page 19
container_issue 1
container_start_page 19
container_title International journal of health geographics
container_volume 16
creator Kronenfeld, Barry J
Wong, David W S
description Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.
doi_str_mv 10.1186/s12942-017-0093-9
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e0c98c2f3ff4be2b32ef101ad668a57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511366971</galeid><doaj_id>oai_doaj_org_article_9e0c98c2f3ff4be2b32ef101ad668a57</doaj_id><sourcerecordid>A511366971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923</originalsourceid><addsrcrecordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJ1yY3Qil-HCgIWsS7kM1O1hz2bGqyW9Rfb9ZTa49ILjJMnnkzM7xV9RTIKYCSrzJQzWlDoG0I0azR96pj4K1sSEu_3L8TH1WPct4SQilw-bA6okoQSZU6rjafQ17sGH6GaajzbOeQ5-DsWOcwTMGXcHJYR1_3IaPNWLtxyTOmXC95LXE2zXFIdpcfVw-8HTM-ublPqsu3by7P3zcXH95tzs8uGic0nxvLZKe8ZOi9BymFRiBSdRQcKTO1LXOlS64lcJCaOoUcNbXAe09Vryk7qTZ72T7arblKYWfTDxNtML8TMQ2mtBTciEYjcVo56pn3vEPaMYoeCNheSmVFW7Re77Wulm6HvcNpTnY8ED18mcJXM8RrIzhjhIki8OJGIMVvC-bZ7EJ2OI52wrhkA0prTqSQqqDP_0G3cUlT2ZQBTYTgoqX6LzXYMkCYfCz_ulXUnAkAJqVuoVCn_6HK6XEXXJzQh5I_KHh5UFCYGb_Pg11yNptPHw9Z2LMuxZwT-tt9ADGr7czedqbYzqy2M2vbz-4u8rbij8_YLzmY0Os</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905545729</pqid></control><display><type>article</type><title>Visualizing statistical significance of disease clusters using cartograms</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kronenfeld, Barry J ; Wong, David W S</creator><creatorcontrib>Kronenfeld, Barry J ; Wong, David W S</creatorcontrib><description>Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.</description><identifier>ISSN: 1476-072X</identifier><identifier>EISSN: 1476-072X</identifier><identifier>DOI: 10.1186/s12942-017-0093-9</identifier><identifier>PMID: 28506288</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Analytics ; Automation ; Bioinformatics ; California ; California - epidemiology ; Cancer ; Cartograms ; Case studies ; Cluster Analysis ; Construction ; Construction equipment ; Density ; Density equalizing maps ; Disease mapping ; Diseases ; Epidemiology ; Geographic Information Systems - statistics &amp; numerical data ; Geographic Information Systems - utilization ; Geographic Mapping ; Geovisual analytics ; Guidelines ; Health surveillance ; Humans ; Hypotheses ; Hypothesis testing ; Incidence ; Inference ; Leukemia ; Leukemia - diagnosis ; Leukemia - epidemiology ; Mapping ; Mathematical analysis ; Methodology ; Neighborhoods ; Population ; Population (statistical) ; Population Surveillance - methods ; Public health ; Risk assessment ; Scan statistics ; Scientometrics ; Searching ; Spatial analysis ; Statistical analysis ; Statistical significance ; Statistics ; Uncertainty ; Visual perception</subject><ispartof>International journal of health geographics, 2017-05, Vol.16 (1), p.19-19, Article 19</ispartof><rights>COPYRIGHT 2017 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2017</rights><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923</citedby><cites>FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923</cites><orcidid>0000-0002-0525-0071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5433035/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1905545729?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28506288$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kronenfeld, Barry J</creatorcontrib><creatorcontrib>Wong, David W S</creatorcontrib><title>Visualizing statistical significance of disease clusters using cartograms</title><title>International journal of health geographics</title><addtitle>Int J Health Geogr</addtitle><description>Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.</description><subject>Analysis</subject><subject>Analytics</subject><subject>Automation</subject><subject>Bioinformatics</subject><subject>California</subject><subject>California - epidemiology</subject><subject>Cancer</subject><subject>Cartograms</subject><subject>Case studies</subject><subject>Cluster Analysis</subject><subject>Construction</subject><subject>Construction equipment</subject><subject>Density</subject><subject>Density equalizing maps</subject><subject>Disease mapping</subject><subject>Diseases</subject><subject>Epidemiology</subject><subject>Geographic Information Systems - statistics &amp; numerical data</subject><subject>Geographic Information Systems - utilization</subject><subject>Geographic Mapping</subject><subject>Geovisual analytics</subject><subject>Guidelines</subject><subject>Health surveillance</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>Incidence</subject><subject>Inference</subject><subject>Leukemia</subject><subject>Leukemia - diagnosis</subject><subject>Leukemia - epidemiology</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Neighborhoods</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population Surveillance - methods</subject><subject>Public health</subject><subject>Risk assessment</subject><subject>Scan statistics</subject><subject>Scientometrics</subject><subject>Searching</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Statistical significance</subject><subject>Statistics</subject><subject>Uncertainty</subject><subject>Visual perception</subject><issn>1476-072X</issn><issn>1476-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFTEQhhdRbK3-AG9kwRu92JrJ1yY3Qil-HCgIWsS7kM1O1hz2bGqyW9Rfb9ZTa49ILjJMnnkzM7xV9RTIKYCSrzJQzWlDoG0I0azR96pj4K1sSEu_3L8TH1WPct4SQilw-bA6okoQSZU6rjafQ17sGH6GaajzbOeQ5-DsWOcwTMGXcHJYR1_3IaPNWLtxyTOmXC95LXE2zXFIdpcfVw-8HTM-ublPqsu3by7P3zcXH95tzs8uGic0nxvLZKe8ZOi9BymFRiBSdRQcKTO1LXOlS64lcJCaOoUcNbXAe09Vryk7qTZ72T7arblKYWfTDxNtML8TMQ2mtBTciEYjcVo56pn3vEPaMYoeCNheSmVFW7Re77Wulm6HvcNpTnY8ED18mcJXM8RrIzhjhIki8OJGIMVvC-bZ7EJ2OI52wrhkA0prTqSQqqDP_0G3cUlT2ZQBTYTgoqX6LzXYMkCYfCz_ulXUnAkAJqVuoVCn_6HK6XEXXJzQh5I_KHh5UFCYGb_Pg11yNptPHw9Z2LMuxZwT-tt9ADGr7czedqbYzqy2M2vbz-4u8rbij8_YLzmY0Os</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Kronenfeld, Barry J</creator><creator>Wong, David W S</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7T2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0525-0071</orcidid></search><sort><creationdate>20170515</creationdate><title>Visualizing statistical significance of disease clusters using cartograms</title><author>Kronenfeld, Barry J ; Wong, David W S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Analytics</topic><topic>Automation</topic><topic>Bioinformatics</topic><topic>California</topic><topic>California - epidemiology</topic><topic>Cancer</topic><topic>Cartograms</topic><topic>Case studies</topic><topic>Cluster Analysis</topic><topic>Construction</topic><topic>Construction equipment</topic><topic>Density</topic><topic>Density equalizing maps</topic><topic>Disease mapping</topic><topic>Diseases</topic><topic>Epidemiology</topic><topic>Geographic Information Systems - statistics &amp; numerical data</topic><topic>Geographic Information Systems - utilization</topic><topic>Geographic Mapping</topic><topic>Geovisual analytics</topic><topic>Guidelines</topic><topic>Health surveillance</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>Incidence</topic><topic>Inference</topic><topic>Leukemia</topic><topic>Leukemia - diagnosis</topic><topic>Leukemia - epidemiology</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Neighborhoods</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population Surveillance - methods</topic><topic>Public health</topic><topic>Risk assessment</topic><topic>Scan statistics</topic><topic>Scientometrics</topic><topic>Searching</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Statistical significance</topic><topic>Statistics</topic><topic>Uncertainty</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kronenfeld, Barry J</creatorcontrib><creatorcontrib>Wong, David W S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of health geographics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kronenfeld, Barry J</au><au>Wong, David W S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing statistical significance of disease clusters using cartograms</atitle><jtitle>International journal of health geographics</jtitle><addtitle>Int J Health Geogr</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>19</epage><pages>19-19</pages><artnum>19</artnum><issn>1476-072X</issn><eissn>1476-072X</eissn><abstract>Health officials and epidemiological researchers often use maps of disease rates to identify potential disease clusters. Because these maps exaggerate the prominence of low-density districts and hide potential clusters in urban (high-density) areas, many researchers have used density-equalizing maps (cartograms) as a basis for epidemiological mapping. However, we do not have existing guidelines for visual assessment of statistical uncertainty. To address this shortcoming, we develop techniques for visual determination of statistical significance of clusters spanning one or more districts on a cartogram. We developed the techniques within a geovisual analytics framework that does not rely on automated significance testing, and can therefore facilitate visual analysis to detect clusters that automated techniques might miss. On a cartogram of the at-risk population, the statistical significance of a disease cluster is determinate from the rate, area and shape of the cluster under standard hypothesis testing scenarios. We develop formulae to determine, for a given rate, the area required for statistical significance of a priori and a posteriori designated regions under certain test assumptions. Uniquely, our approach enables dynamic inference of aggregate regions formed by combining individual districts. The method is implemented in interactive tools that provide choropleth mapping, automated legend construction and dynamic search tools to facilitate cluster detection and assessment of the validity of tested assumptions. A case study of leukemia incidence analysis in California demonstrates the ability to visually distinguish between statistically significant and insignificant regions. The proposed geovisual analytics approach enables intuitive visual assessment of statistical significance of arbitrarily defined regions on a cartogram. Our research prompts a broader discussion of the role of geovisual exploratory analyses in disease mapping and the appropriate framework for visually assessing the statistical significance of spatial clusters.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>28506288</pmid><doi>10.1186/s12942-017-0093-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0525-0071</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-072X
ispartof International journal of health geographics, 2017-05, Vol.16 (1), p.19-19, Article 19
issn 1476-072X
1476-072X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e0c98c2f3ff4be2b32ef101ad668a57
source Publicly Available Content Database; PubMed Central
subjects Analysis
Analytics
Automation
Bioinformatics
California
California - epidemiology
Cancer
Cartograms
Case studies
Cluster Analysis
Construction
Construction equipment
Density
Density equalizing maps
Disease mapping
Diseases
Epidemiology
Geographic Information Systems - statistics & numerical data
Geographic Information Systems - utilization
Geographic Mapping
Geovisual analytics
Guidelines
Health surveillance
Humans
Hypotheses
Hypothesis testing
Incidence
Inference
Leukemia
Leukemia - diagnosis
Leukemia - epidemiology
Mapping
Mathematical analysis
Methodology
Neighborhoods
Population
Population (statistical)
Population Surveillance - methods
Public health
Risk assessment
Scan statistics
Scientometrics
Searching
Spatial analysis
Statistical analysis
Statistical significance
Statistics
Uncertainty
Visual perception
title Visualizing statistical significance of disease clusters using cartograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20statistical%20significance%20of%20disease%20clusters%20using%20cartograms&rft.jtitle=International%20journal%20of%20health%20geographics&rft.au=Kronenfeld,%20Barry%20J&rft.date=2017-05-15&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=19&rft.pages=19-19&rft.artnum=19&rft.issn=1476-072X&rft.eissn=1476-072X&rft_id=info:doi/10.1186/s12942-017-0093-9&rft_dat=%3Cgale_doaj_%3EA511366971%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-a36b8f63efff16659e1068b21c0118773c022496141692c8e4e92a14df28d923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1905545729&rft_id=info:pmid/28506288&rft_galeid=A511366971&rfr_iscdi=true