Loading…
A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments
The optimization problems in a fluid catalytic cracking process with dynamic constraints and conflicting objectives are challenging due to the complicated constraints and dynamic environments. The decision variables need to be reoptimized to obtain the best objectives when dynamic environments arise...
Saved in:
Published in: | Mathematics (Basel) 2024-07, Vol.12 (14), p.2285 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c254t-4be3db510e5dd16dae4fdf16d8982bf3f85fcb655e6d2304482babe0dd5f25ed3 |
container_end_page | |
container_issue | 14 |
container_start_page | 2285 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Liu, Guanzhi Pang, Xinfu Wan, Jishen |
description | The optimization problems in a fluid catalytic cracking process with dynamic constraints and conflicting objectives are challenging due to the complicated constraints and dynamic environments. The decision variables need to be reoptimized to obtain the best objectives when dynamic environments arise. To solve these problems, we established a mathematical model and proposed a dynamic constrained multiobjective optimization evolution algorithm for the fluid catalytic cracking process. In this algorithm, we design an offspring generation strategy based on minimax solutions, which can explore more feasible regions and converge quickly. Additionally, a dynamic response strategy based on population feasibility is proposed to improve the feasible and infeasible solutions by different perturbations, respectively. To verify the effectiveness of the algorithm, we test the algorithm on ten instances based on the hypervolume metric. Experimental results show that the proposed algorithm is highly competitive with several state-of-the-art competitors. |
doi_str_mv | 10.3390/math12142285 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e18062e59fd433aa4bc7b7d08b6ea57</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e18062e59fd433aa4bc7b7d08b6ea57</doaj_id><sourcerecordid>3084962257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-4be3db510e5dd16dae4fdf16d8982bf3f85fcb655e6d2304482babe0dd5f25ed3</originalsourceid><addsrcrecordid>eNpNUclOHDEQbUUgBRFufIClXBni9tLLcdSsEhE5wNkqt8uDJ932YHsGTb4-DoMi6lKl955ebVV1XtNLznv6Y4b8UrNaMNbJL9UJY6xdtIU4-lR_rc5SWtMSfc070Z9UuyX5uZ2yC3qNY3Y7JI-b7Gb3BwrmyXJahejyy0xsiORm2jpDBsgw7bMbyRBh_O38ivyKYcSUyFuRkiH4lCM4nxMBb8jV3sNc1Nd-52LwMxbiW3VsYUp49pFPq-eb66fhbvHweHs_LB8WI5MiL4RGbrSsKUpj6sYACmtsKbq-Y9py20k76kZKbAzjVIiCgkZqjLRMouGn1f3B1wRYq010M8S9CuDUOxDiSkEsq0yoeqw72jCUvTWCcwChx1a3hna6QZBt8fp-8NrE8LrFlNU6bKMv4ytOyzEbxt5VFwfVGENKEe3_rjVV_x6lPj-K_wU-nIkB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084962257</pqid></control><display><type>article</type><title>A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments</title><source>Publicly Available Content Database</source><creator>Liu, Guanzhi ; Pang, Xinfu ; Wan, Jishen</creator><creatorcontrib>Liu, Guanzhi ; Pang, Xinfu ; Wan, Jishen</creatorcontrib><description>The optimization problems in a fluid catalytic cracking process with dynamic constraints and conflicting objectives are challenging due to the complicated constraints and dynamic environments. The decision variables need to be reoptimized to obtain the best objectives when dynamic environments arise. To solve these problems, we established a mathematical model and proposed a dynamic constrained multiobjective optimization evolution algorithm for the fluid catalytic cracking process. In this algorithm, we design an offspring generation strategy based on minimax solutions, which can explore more feasible regions and converge quickly. Additionally, a dynamic response strategy based on population feasibility is proposed to improve the feasible and infeasible solutions by different perturbations, respectively. To verify the effectiveness of the algorithm, we test the algorithm on ten instances based on the hypervolume metric. Experimental results show that the proposed algorithm is highly competitive with several state-of-the-art competitors.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12142285</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Catalytic converters ; Catalytic cracking ; Constraints ; Design ; Design optimization ; dynamic constrained multiobjective optimization ; Dynamic response ; dynamic response strategy ; Energy consumption ; Energy industry ; Evolutionary algorithms ; Feasibility ; Fluid catalytic cracking ; Fossil fuels ; Gasoline ; Genetic algorithms ; Linear programming ; Mathematical models ; Multiple objective analysis ; offspring generation ; Optimization algorithms ; Profits ; Strategy ; Variables</subject><ispartof>Mathematics (Basel), 2024-07, Vol.12 (14), p.2285</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c254t-4be3db510e5dd16dae4fdf16d8982bf3f85fcb655e6d2304482babe0dd5f25ed3</cites><orcidid>0000-0001-6981-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084962257/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084962257?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Liu, Guanzhi</creatorcontrib><creatorcontrib>Pang, Xinfu</creatorcontrib><creatorcontrib>Wan, Jishen</creatorcontrib><title>A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments</title><title>Mathematics (Basel)</title><description>The optimization problems in a fluid catalytic cracking process with dynamic constraints and conflicting objectives are challenging due to the complicated constraints and dynamic environments. The decision variables need to be reoptimized to obtain the best objectives when dynamic environments arise. To solve these problems, we established a mathematical model and proposed a dynamic constrained multiobjective optimization evolution algorithm for the fluid catalytic cracking process. In this algorithm, we design an offspring generation strategy based on minimax solutions, which can explore more feasible regions and converge quickly. Additionally, a dynamic response strategy based on population feasibility is proposed to improve the feasible and infeasible solutions by different perturbations, respectively. To verify the effectiveness of the algorithm, we test the algorithm on ten instances based on the hypervolume metric. Experimental results show that the proposed algorithm is highly competitive with several state-of-the-art competitors.</description><subject>Catalytic converters</subject><subject>Catalytic cracking</subject><subject>Constraints</subject><subject>Design</subject><subject>Design optimization</subject><subject>dynamic constrained multiobjective optimization</subject><subject>Dynamic response</subject><subject>dynamic response strategy</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Evolutionary algorithms</subject><subject>Feasibility</subject><subject>Fluid catalytic cracking</subject><subject>Fossil fuels</subject><subject>Gasoline</subject><subject>Genetic algorithms</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>offspring generation</subject><subject>Optimization algorithms</subject><subject>Profits</subject><subject>Strategy</subject><subject>Variables</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOHDEQbUUgBRFufIClXBni9tLLcdSsEhE5wNkqt8uDJ932YHsGTb4-DoMi6lKl955ebVV1XtNLznv6Y4b8UrNaMNbJL9UJY6xdtIU4-lR_rc5SWtMSfc070Z9UuyX5uZ2yC3qNY3Y7JI-b7Gb3BwrmyXJahejyy0xsiORm2jpDBsgw7bMbyRBh_O38ivyKYcSUyFuRkiH4lCM4nxMBb8jV3sNc1Nd-52LwMxbiW3VsYUp49pFPq-eb66fhbvHweHs_LB8WI5MiL4RGbrSsKUpj6sYACmtsKbq-Y9py20k76kZKbAzjVIiCgkZqjLRMouGn1f3B1wRYq010M8S9CuDUOxDiSkEsq0yoeqw72jCUvTWCcwChx1a3hna6QZBt8fp-8NrE8LrFlNU6bKMv4ytOyzEbxt5VFwfVGENKEe3_rjVV_x6lPj-K_wU-nIkB</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Liu, Guanzhi</creator><creator>Pang, Xinfu</creator><creator>Wan, Jishen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6981-596X</orcidid></search><sort><creationdate>20240701</creationdate><title>A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments</title><author>Liu, Guanzhi ; Pang, Xinfu ; Wan, Jishen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-4be3db510e5dd16dae4fdf16d8982bf3f85fcb655e6d2304482babe0dd5f25ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalytic converters</topic><topic>Catalytic cracking</topic><topic>Constraints</topic><topic>Design</topic><topic>Design optimization</topic><topic>dynamic constrained multiobjective optimization</topic><topic>Dynamic response</topic><topic>dynamic response strategy</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Evolutionary algorithms</topic><topic>Feasibility</topic><topic>Fluid catalytic cracking</topic><topic>Fossil fuels</topic><topic>Gasoline</topic><topic>Genetic algorithms</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>offspring generation</topic><topic>Optimization algorithms</topic><topic>Profits</topic><topic>Strategy</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guanzhi</creatorcontrib><creatorcontrib>Pang, Xinfu</creatorcontrib><creatorcontrib>Wan, Jishen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guanzhi</au><au>Pang, Xinfu</au><au>Wan, Jishen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>2285</spage><pages>2285-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The optimization problems in a fluid catalytic cracking process with dynamic constraints and conflicting objectives are challenging due to the complicated constraints and dynamic environments. The decision variables need to be reoptimized to obtain the best objectives when dynamic environments arise. To solve these problems, we established a mathematical model and proposed a dynamic constrained multiobjective optimization evolution algorithm for the fluid catalytic cracking process. In this algorithm, we design an offspring generation strategy based on minimax solutions, which can explore more feasible regions and converge quickly. Additionally, a dynamic response strategy based on population feasibility is proposed to improve the feasible and infeasible solutions by different perturbations, respectively. To verify the effectiveness of the algorithm, we test the algorithm on ten instances based on the hypervolume metric. Experimental results show that the proposed algorithm is highly competitive with several state-of-the-art competitors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12142285</doi><orcidid>https://orcid.org/0000-0001-6981-596X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-07, Vol.12 (14), p.2285 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e18062e59fd433aa4bc7b7d08b6ea57 |
source | Publicly Available Content Database |
subjects | Catalytic converters Catalytic cracking Constraints Design Design optimization dynamic constrained multiobjective optimization Dynamic response dynamic response strategy Energy consumption Energy industry Evolutionary algorithms Feasibility Fluid catalytic cracking Fossil fuels Gasoline Genetic algorithms Linear programming Mathematical models Multiple objective analysis offspring generation Optimization algorithms Profits Strategy Variables |
title | A Multiobjective Optimization Algorithm for Fluid Catalytic Cracking Process with Constraints and Dynamic Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiobjective%20Optimization%20Algorithm%20for%20Fluid%20Catalytic%20Cracking%20Process%20with%20Constraints%20and%20Dynamic%20Environments&rft.jtitle=Mathematics%20(Basel)&rft.au=Liu,%20Guanzhi&rft.date=2024-07-01&rft.volume=12&rft.issue=14&rft.spage=2285&rft.pages=2285-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12142285&rft_dat=%3Cproquest_doaj_%3E3084962257%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c254t-4be3db510e5dd16dae4fdf16d8982bf3f85fcb655e6d2304482babe0dd5f25ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084962257&rft_id=info:pmid/&rfr_iscdi=true |