Loading…

Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics

Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of...

Full description

Saved in:
Bibliographic Details
Published in:Communications materials 2025-01, Vol.6 (1), p.2-8, Article 2
Main Authors: Hamtaei, Sarallah, Debot, Alice, Scaffidi, Romain, Brammertz, Guy, Cariou, Estelle, Garner, Sean M., Aguirre, Aranzazu, Poortmans, Jef, Dale, Phillip J., Vermang, Bart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93
container_end_page 8
container_issue 1
container_start_page 2
container_title Communications materials
container_volume 6
creator Hamtaei, Sarallah
Debot, Alice
Scaffidi, Romain
Brammertz, Guy
Cariou, Estelle
Garner, Sean M.
Aguirre, Aranzazu
Poortmans, Jef
Dale, Phillip J.
Vermang, Bart
description Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se) 2 , with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion. Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)>sub /sub
doi_str_mv 10.1038/s43246-024-00706-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14</doaj_id><sourcerecordid>3151982107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIoMIPcLLEpZUaWD_iJEdU8aiExKHlbK0du6QqcbFTHn-PIQg4cdrV7szsrCbLTimcU-DVRRScCZkDEzlACTJ_28uOmJQsF0Lw_T_9YXYS4xoAWEGpFHCULa9Rh9Zg3_qOeEe07RrUG0uwa0iHIfhXolO_wi2Z7cbzbnqDk_FiurATRpwPpE9L-0S2j773L37TY2vicXbgcBPtyXcdZQ_XV8vZbX53fzOfXd7lJjnq84pS3tCyZIAAxjHJEE3Z6IIWTV3qxjKtDbcFqwuLWtTSivQvs-BKUwlT81E2H3Qbj2u1De0ThnflsVVfAx9WCkPfmo1VtaVYmIrzsnFCVLS2UBnpOEjk0lGRtM4GrW3wzzsbe7X2u9Al-4rTgtYVo1AmFBtQJvgYg3U_VymozzDUEIZKYaivMNRbIvGBFBO4W9nwK_0P6wM-GIqM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151982107</pqid></control><display><type>article</type><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</creator><creatorcontrib>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</creatorcontrib><description>Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se) 2 , with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion. Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)&gt;sub&lt;2 &gt; /sub&lt;on bendable substrates show low waste and toxicity footprints.</description><identifier>ISSN: 2662-4443</identifier><identifier>EISSN: 2662-4443</identifier><identifier>DOI: 10.1038/s43246-024-00706-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/4077/4072/4062 ; Absorbers ; Biocompatibility ; Biomedical materials ; Chemistry and Materials Science ; Energy gap ; Form factors ; Materials Science ; Minority carriers ; Near infrared radiation ; Open circuit voltage ; Photovoltaic cells ; Solar cells ; Thin films ; Toxic wastes ; Toxicity</subject><ispartof>Communications materials, 2025-01, Vol.6 (1), p.2-8, Article 2</ispartof><rights>The Author(s) 2025</rights><rights>Copyright Nature Publishing Group Dec 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</cites><orcidid>0000-0003-2974-9632 ; 0000-0002-5458-7068 ; 0000-0003-4821-8669 ; 0000-0003-1404-7339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3151982107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Hamtaei, Sarallah</creatorcontrib><creatorcontrib>Debot, Alice</creatorcontrib><creatorcontrib>Scaffidi, Romain</creatorcontrib><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Cariou, Estelle</creatorcontrib><creatorcontrib>Garner, Sean M.</creatorcontrib><creatorcontrib>Aguirre, Aranzazu</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Vermang, Bart</creatorcontrib><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><title>Communications materials</title><addtitle>Commun Mater</addtitle><description>Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se) 2 , with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion. Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)&gt;sub&lt;2 &gt; /sub&lt;on bendable substrates show low waste and toxicity footprints.</description><subject>639/301/299/946</subject><subject>639/4077/4072/4062</subject><subject>Absorbers</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Energy gap</subject><subject>Form factors</subject><subject>Materials Science</subject><subject>Minority carriers</subject><subject>Near infrared radiation</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Toxic wastes</subject><subject>Toxicity</subject><issn>2662-4443</issn><issn>2662-4443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIoMIPcLLEpZUaWD_iJEdU8aiExKHlbK0du6QqcbFTHn-PIQg4cdrV7szsrCbLTimcU-DVRRScCZkDEzlACTJ_28uOmJQsF0Lw_T_9YXYS4xoAWEGpFHCULa9Rh9Zg3_qOeEe07RrUG0uwa0iHIfhXolO_wi2Z7cbzbnqDk_FiurATRpwPpE9L-0S2j773L37TY2vicXbgcBPtyXcdZQ_XV8vZbX53fzOfXd7lJjnq84pS3tCyZIAAxjHJEE3Z6IIWTV3qxjKtDbcFqwuLWtTSivQvs-BKUwlT81E2H3Qbj2u1De0ThnflsVVfAx9WCkPfmo1VtaVYmIrzsnFCVLS2UBnpOEjk0lGRtM4GrW3wzzsbe7X2u9Al-4rTgtYVo1AmFBtQJvgYg3U_VymozzDUEIZKYaivMNRbIvGBFBO4W9nwK_0P6wM-GIqM</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Hamtaei, Sarallah</creator><creator>Debot, Alice</creator><creator>Scaffidi, Romain</creator><creator>Brammertz, Guy</creator><creator>Cariou, Estelle</creator><creator>Garner, Sean M.</creator><creator>Aguirre, Aranzazu</creator><creator>Poortmans, Jef</creator><creator>Dale, Phillip J.</creator><creator>Vermang, Bart</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2974-9632</orcidid><orcidid>https://orcid.org/0000-0002-5458-7068</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0003-1404-7339</orcidid></search><sort><creationdate>20250106</creationdate><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><author>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/301/299/946</topic><topic>639/4077/4072/4062</topic><topic>Absorbers</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Energy gap</topic><topic>Form factors</topic><topic>Materials Science</topic><topic>Minority carriers</topic><topic>Near infrared radiation</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Toxic wastes</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamtaei, Sarallah</creatorcontrib><creatorcontrib>Debot, Alice</creatorcontrib><creatorcontrib>Scaffidi, Romain</creatorcontrib><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Cariou, Estelle</creatorcontrib><creatorcontrib>Garner, Sean M.</creatorcontrib><creatorcontrib>Aguirre, Aranzazu</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Vermang, Bart</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamtaei, Sarallah</au><au>Debot, Alice</au><au>Scaffidi, Romain</au><au>Brammertz, Guy</au><au>Cariou, Estelle</au><au>Garner, Sean M.</au><au>Aguirre, Aranzazu</au><au>Poortmans, Jef</au><au>Dale, Phillip J.</au><au>Vermang, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</atitle><jtitle>Communications materials</jtitle><stitle>Commun Mater</stitle><date>2025-01-06</date><risdate>2025</risdate><volume>6</volume><issue>1</issue><spage>2</spage><epage>8</epage><pages>2-8</pages><artnum>2</artnum><issn>2662-4443</issn><eissn>2662-4443</eissn><abstract>Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se) 2 , with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion. Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)&gt;sub&lt;2 &gt; /sub&lt;on bendable substrates show low waste and toxicity footprints.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s43246-024-00706-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2974-9632</orcidid><orcidid>https://orcid.org/0000-0002-5458-7068</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0003-1404-7339</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-4443
ispartof Communications materials, 2025-01, Vol.6 (1), p.2-8, Article 2
issn 2662-4443
2662-4443
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/299/946
639/4077/4072/4062
Absorbers
Biocompatibility
Biomedical materials
Chemistry and Materials Science
Energy gap
Form factors
Materials Science
Minority carriers
Near infrared radiation
Open circuit voltage
Photovoltaic cells
Solar cells
Thin films
Toxic wastes
Toxicity
title Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20bendable%20and%20narrow%20bandgap%20Cu(In,Ga)(S,Se)2%20for%20tandem%20photovoltaics&rft.jtitle=Communications%20materials&rft.au=Hamtaei,%20Sarallah&rft.date=2025-01-06&rft.volume=6&rft.issue=1&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.artnum=2&rft.issn=2662-4443&rft.eissn=2662-4443&rft_id=info:doi/10.1038/s43246-024-00706-x&rft_dat=%3Cproquest_doaj_%3E3151982107%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151982107&rft_id=info:pmid/&rfr_iscdi=true