Loading…
Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics
Cu(In,Ga)(S,Se) 2 absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of...
Saved in:
Published in: | Communications materials 2025-01, Vol.6 (1), p.2-8, Article 2 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93 |
container_end_page | 8 |
container_issue | 1 |
container_start_page | 2 |
container_title | Communications materials |
container_volume | 6 |
creator | Hamtaei, Sarallah Debot, Alice Scaffidi, Romain Brammertz, Guy Cariou, Estelle Garner, Sean M. Aguirre, Aranzazu Poortmans, Jef Dale, Phillip J. Vermang, Bart |
description | Cu(In,Ga)(S,Se)
2
absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se)
2
, with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion.
Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)>sub /sub |
doi_str_mv | 10.1038/s43246-024-00706-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14</doaj_id><sourcerecordid>3151982107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIoMIPcLLEpZUaWD_iJEdU8aiExKHlbK0du6QqcbFTHn-PIQg4cdrV7szsrCbLTimcU-DVRRScCZkDEzlACTJ_28uOmJQsF0Lw_T_9YXYS4xoAWEGpFHCULa9Rh9Zg3_qOeEe07RrUG0uwa0iHIfhXolO_wi2Z7cbzbnqDk_FiurATRpwPpE9L-0S2j773L37TY2vicXbgcBPtyXcdZQ_XV8vZbX53fzOfXd7lJjnq84pS3tCyZIAAxjHJEE3Z6IIWTV3qxjKtDbcFqwuLWtTSivQvs-BKUwlT81E2H3Qbj2u1De0ThnflsVVfAx9WCkPfmo1VtaVYmIrzsnFCVLS2UBnpOEjk0lGRtM4GrW3wzzsbe7X2u9Al-4rTgtYVo1AmFBtQJvgYg3U_VymozzDUEIZKYaivMNRbIvGBFBO4W9nwK_0P6wM-GIqM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151982107</pqid></control><display><type>article</type><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</creator><creatorcontrib>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</creatorcontrib><description>Cu(In,Ga)(S,Se)
2
absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se)
2
, with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion.
Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)>sub<2 > /sub<on bendable substrates show low waste and toxicity footprints.</description><identifier>ISSN: 2662-4443</identifier><identifier>EISSN: 2662-4443</identifier><identifier>DOI: 10.1038/s43246-024-00706-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/4077/4072/4062 ; Absorbers ; Biocompatibility ; Biomedical materials ; Chemistry and Materials Science ; Energy gap ; Form factors ; Materials Science ; Minority carriers ; Near infrared radiation ; Open circuit voltage ; Photovoltaic cells ; Solar cells ; Thin films ; Toxic wastes ; Toxicity</subject><ispartof>Communications materials, 2025-01, Vol.6 (1), p.2-8, Article 2</ispartof><rights>The Author(s) 2025</rights><rights>Copyright Nature Publishing Group Dec 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</cites><orcidid>0000-0003-2974-9632 ; 0000-0002-5458-7068 ; 0000-0003-4821-8669 ; 0000-0003-1404-7339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3151982107?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Hamtaei, Sarallah</creatorcontrib><creatorcontrib>Debot, Alice</creatorcontrib><creatorcontrib>Scaffidi, Romain</creatorcontrib><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Cariou, Estelle</creatorcontrib><creatorcontrib>Garner, Sean M.</creatorcontrib><creatorcontrib>Aguirre, Aranzazu</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Vermang, Bart</creatorcontrib><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><title>Communications materials</title><addtitle>Commun Mater</addtitle><description>Cu(In,Ga)(S,Se)
2
absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se)
2
, with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion.
Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)>sub<2 > /sub<on bendable substrates show low waste and toxicity footprints.</description><subject>639/301/299/946</subject><subject>639/4077/4072/4062</subject><subject>Absorbers</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Chemistry and Materials Science</subject><subject>Energy gap</subject><subject>Form factors</subject><subject>Materials Science</subject><subject>Minority carriers</subject><subject>Near infrared radiation</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Toxic wastes</subject><subject>Toxicity</subject><issn>2662-4443</issn><issn>2662-4443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctOwzAQjBBIoMIPcLLEpZUaWD_iJEdU8aiExKHlbK0du6QqcbFTHn-PIQg4cdrV7szsrCbLTimcU-DVRRScCZkDEzlACTJ_28uOmJQsF0Lw_T_9YXYS4xoAWEGpFHCULa9Rh9Zg3_qOeEe07RrUG0uwa0iHIfhXolO_wi2Z7cbzbnqDk_FiurATRpwPpE9L-0S2j773L37TY2vicXbgcBPtyXcdZQ_XV8vZbX53fzOfXd7lJjnq84pS3tCyZIAAxjHJEE3Z6IIWTV3qxjKtDbcFqwuLWtTSivQvs-BKUwlT81E2H3Qbj2u1De0ThnflsVVfAx9WCkPfmo1VtaVYmIrzsnFCVLS2UBnpOEjk0lGRtM4GrW3wzzsbe7X2u9Al-4rTgtYVo1AmFBtQJvgYg3U_VymozzDUEIZKYaivMNRbIvGBFBO4W9nwK_0P6wM-GIqM</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Hamtaei, Sarallah</creator><creator>Debot, Alice</creator><creator>Scaffidi, Romain</creator><creator>Brammertz, Guy</creator><creator>Cariou, Estelle</creator><creator>Garner, Sean M.</creator><creator>Aguirre, Aranzazu</creator><creator>Poortmans, Jef</creator><creator>Dale, Phillip J.</creator><creator>Vermang, Bart</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2974-9632</orcidid><orcidid>https://orcid.org/0000-0002-5458-7068</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0003-1404-7339</orcidid></search><sort><creationdate>20250106</creationdate><title>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</title><author>Hamtaei, Sarallah ; Debot, Alice ; Scaffidi, Romain ; Brammertz, Guy ; Cariou, Estelle ; Garner, Sean M. ; Aguirre, Aranzazu ; Poortmans, Jef ; Dale, Phillip J. ; Vermang, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/301/299/946</topic><topic>639/4077/4072/4062</topic><topic>Absorbers</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Chemistry and Materials Science</topic><topic>Energy gap</topic><topic>Form factors</topic><topic>Materials Science</topic><topic>Minority carriers</topic><topic>Near infrared radiation</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Toxic wastes</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamtaei, Sarallah</creatorcontrib><creatorcontrib>Debot, Alice</creatorcontrib><creatorcontrib>Scaffidi, Romain</creatorcontrib><creatorcontrib>Brammertz, Guy</creatorcontrib><creatorcontrib>Cariou, Estelle</creatorcontrib><creatorcontrib>Garner, Sean M.</creatorcontrib><creatorcontrib>Aguirre, Aranzazu</creatorcontrib><creatorcontrib>Poortmans, Jef</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Vermang, Bart</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Communications materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamtaei, Sarallah</au><au>Debot, Alice</au><au>Scaffidi, Romain</au><au>Brammertz, Guy</au><au>Cariou, Estelle</au><au>Garner, Sean M.</au><au>Aguirre, Aranzazu</au><au>Poortmans, Jef</au><au>Dale, Phillip J.</au><au>Vermang, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics</atitle><jtitle>Communications materials</jtitle><stitle>Commun Mater</stitle><date>2025-01-06</date><risdate>2025</risdate><volume>6</volume><issue>1</issue><spage>2</spage><epage>8</epage><pages>2-8</pages><artnum>2</artnum><issn>2662-4443</issn><eissn>2662-4443</eissn><abstract>Cu(In,Ga)(S,Se)
2
absorbers with a bandgap in the near-infrared region are ideal candidates for a bottom cell in multi-junction solar cell architectures. In flexible and lightweight form factors, such devices could help power many applications through integrated solar cells. Here, we show the use of a two-step method to synthesize Cu(In,Ga)(S,Se)
2
, with a bandgap between 1.00 and 1.13 eV, on bendable ultra-thin glass, with minority carrier lifetimes approaching 100 ns, in a homogenous and repeatable fashion. We also report on conventional and alternative device fabrication methods with very low waste and toxicity footprints. Champion solar cells are fabricated based on absorbers with a graded bandgap between 1.05 and 1.1 eV, and an open circuit voltage approaching 600 mV. Our results show a way for scalable fabrication of all thin-film, flexible tandem solar cells, by means of industrially relevant processing steps in a low cost and sustainable fashion.
Moving towards flexible photovoltaics is attractive in self-powered wearable opto-electronics and biomedical applications. Here, a simple fabrication approach for growing Cu(In,Ga)(S,Se)>sub<2 > /sub<on bendable substrates show low waste and toxicity footprints.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s43246-024-00706-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2974-9632</orcidid><orcidid>https://orcid.org/0000-0002-5458-7068</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0003-1404-7339</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-4443 |
ispartof | Communications materials, 2025-01, Vol.6 (1), p.2-8, Article 2 |
issn | 2662-4443 2662-4443 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e1a5c8337df44819e08c6f306a36f14 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/299/946 639/4077/4072/4062 Absorbers Biocompatibility Biomedical materials Chemistry and Materials Science Energy gap Form factors Materials Science Minority carriers Near infrared radiation Open circuit voltage Photovoltaic cells Solar cells Thin films Toxic wastes Toxicity |
title | Fabrication of bendable and narrow bandgap Cu(In,Ga)(S,Se)2 for tandem photovoltaics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20bendable%20and%20narrow%20bandgap%20Cu(In,Ga)(S,Se)2%20for%20tandem%20photovoltaics&rft.jtitle=Communications%20materials&rft.au=Hamtaei,%20Sarallah&rft.date=2025-01-06&rft.volume=6&rft.issue=1&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.artnum=2&rft.issn=2662-4443&rft.eissn=2662-4443&rft_id=info:doi/10.1038/s43246-024-00706-x&rft_dat=%3Cproquest_doaj_%3E3151982107%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-8113d17720a00cf262aac7db515d97bde2bbc3e5295eab496e41032e0f7c84c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151982107&rft_id=info:pmid/&rfr_iscdi=true |