Loading…
Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity
One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease develo...
Saved in:
Published in: | Molecules (Basel, Switzerland) Switzerland), 2020-12, Vol.25 (23), p.5698 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33 |
container_end_page | |
container_issue | 23 |
container_start_page | 5698 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 25 |
creator | Frangolho, Ana Correia, Bruno E Vaz, Daniela C Almeida, Zaida L Brito, Rui M M |
description | One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis. |
doi_str_mv | 10.3390/molecules25235698 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56</doaj_id><sourcerecordid>2468335924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</originalsourceid><addsrcrecordid>eNplkk1PGzEQhi0EApryA7hUK3HhkuKP9e76UgkF2iAh0QPlajn2OHHktantbRV-fRdCI2gPM2ON33nkGQ9CpwR_Zkzgiz560IOHTDllvBHdHjomNcVThmux_-Z8hD7kvMaYkprwQ3TEGO1aIugxerjzbhl7SO5JFRdD9T1F6zxU0VbzoVehuk8q5LLaJCguVA8qORVKrn67sqquXB6TulSX_cZHZ-ISgtOubD6iA6t8hpPXOEE_vl7fz-bT27tvN7PL26nmFJcpgLYNUKZpzQxtxGgNYFCiNZpRutCmoWBwTbAQgojOdESAsk2rLQe7YGyCbrZcE9VaPibXq7SRUTn5kohpKVUqTnuQAqgVmi9GKKlbTBSvedcRow0YY3kzsr5sWY_DogejIZSk_Dvo-5vgVnIZf8m2ZVh0z4DzV0CKPwfIRfYua_BeBYhDlrRuOsa4GJudoLN_pOs4pDCO6kWFGcWjmyCyVekUc05gd48hWD5vgPxvA8aaT2-72FX8_XL2B06bsYk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468032080</pqid></control><display><type>article</type><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</creator><creatorcontrib>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</creatorcontrib><description>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25235698</identifier><identifier>PMID: 33287192</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Amyloid ; Amyloid - metabolism ; Amyloidogenesis ; Amyloidosis ; Amyloidosis - metabolism ; ATTR ; Blood Proteins - metabolism ; Communication ; Correlation analysis ; Crosslinking ; Cytotoxicity ; Escherichia coli - metabolism ; Fibrils ; Humans ; Kinetics ; linear oligomerization ; Mutation ; Nervous system ; Oligomerization ; Peptides ; Polymerization ; Prealbumin - metabolism ; Protein Aggregates - physiology ; Protein interaction ; Proteins ; Recombinant Proteins - metabolism ; Transmission electron microscopy ; Transthyretin ; TTR ; TTR variants</subject><ispartof>Molecules (Basel, Switzerland), 2020-12, Vol.25 (23), p.5698</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</citedby><cites>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</cites><orcidid>0000-0001-9128-2557 ; 0000-0002-4097-2766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2468032080/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2468032080?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33287192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frangolho, Ana</creatorcontrib><creatorcontrib>Correia, Bruno E</creatorcontrib><creatorcontrib>Vaz, Daniela C</creatorcontrib><creatorcontrib>Almeida, Zaida L</creatorcontrib><creatorcontrib>Brito, Rui M M</creatorcontrib><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</description><subject>Aggregates</subject><subject>Amyloid</subject><subject>Amyloid - metabolism</subject><subject>Amyloidogenesis</subject><subject>Amyloidosis</subject><subject>Amyloidosis - metabolism</subject><subject>ATTR</subject><subject>Blood Proteins - metabolism</subject><subject>Communication</subject><subject>Correlation analysis</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Escherichia coli - metabolism</subject><subject>Fibrils</subject><subject>Humans</subject><subject>Kinetics</subject><subject>linear oligomerization</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Oligomerization</subject><subject>Peptides</subject><subject>Polymerization</subject><subject>Prealbumin - metabolism</subject><subject>Protein Aggregates - physiology</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Recombinant Proteins - metabolism</subject><subject>Transmission electron microscopy</subject><subject>Transthyretin</subject><subject>TTR</subject><subject>TTR variants</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkk1PGzEQhi0EApryA7hUK3HhkuKP9e76UgkF2iAh0QPlajn2OHHktantbRV-fRdCI2gPM2ON33nkGQ9CpwR_Zkzgiz560IOHTDllvBHdHjomNcVThmux_-Z8hD7kvMaYkprwQ3TEGO1aIugxerjzbhl7SO5JFRdD9T1F6zxU0VbzoVehuk8q5LLaJCguVA8qORVKrn67sqquXB6TulSX_cZHZ-ISgtOubD6iA6t8hpPXOEE_vl7fz-bT27tvN7PL26nmFJcpgLYNUKZpzQxtxGgNYFCiNZpRutCmoWBwTbAQgojOdESAsk2rLQe7YGyCbrZcE9VaPibXq7SRUTn5kohpKVUqTnuQAqgVmi9GKKlbTBSvedcRow0YY3kzsr5sWY_DogejIZSk_Dvo-5vgVnIZf8m2ZVh0z4DzV0CKPwfIRfYua_BeBYhDlrRuOsa4GJudoLN_pOs4pDCO6kWFGcWjmyCyVekUc05gd48hWD5vgPxvA8aaT2-72FX8_XL2B06bsYk</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Frangolho, Ana</creator><creator>Correia, Bruno E</creator><creator>Vaz, Daniela C</creator><creator>Almeida, Zaida L</creator><creator>Brito, Rui M M</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9128-2557</orcidid><orcidid>https://orcid.org/0000-0002-4097-2766</orcidid></search><sort><creationdate>20201203</creationdate><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><author>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Amyloid</topic><topic>Amyloid - metabolism</topic><topic>Amyloidogenesis</topic><topic>Amyloidosis</topic><topic>Amyloidosis - metabolism</topic><topic>ATTR</topic><topic>Blood Proteins - metabolism</topic><topic>Communication</topic><topic>Correlation analysis</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Escherichia coli - metabolism</topic><topic>Fibrils</topic><topic>Humans</topic><topic>Kinetics</topic><topic>linear oligomerization</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Oligomerization</topic><topic>Peptides</topic><topic>Polymerization</topic><topic>Prealbumin - metabolism</topic><topic>Protein Aggregates - physiology</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Recombinant Proteins - metabolism</topic><topic>Transmission electron microscopy</topic><topic>Transthyretin</topic><topic>TTR</topic><topic>TTR variants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frangolho, Ana</creatorcontrib><creatorcontrib>Correia, Bruno E</creatorcontrib><creatorcontrib>Vaz, Daniela C</creatorcontrib><creatorcontrib>Almeida, Zaida L</creatorcontrib><creatorcontrib>Brito, Rui M M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frangolho, Ana</au><au>Correia, Bruno E</au><au>Vaz, Daniela C</au><au>Almeida, Zaida L</au><au>Brito, Rui M M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>25</volume><issue>23</issue><spage>5698</spage><pages>5698-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33287192</pmid><doi>10.3390/molecules25235698</doi><orcidid>https://orcid.org/0000-0001-9128-2557</orcidid><orcidid>https://orcid.org/0000-0002-4097-2766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2020-12, Vol.25 (23), p.5698 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Aggregates Amyloid Amyloid - metabolism Amyloidogenesis Amyloidosis Amyloidosis - metabolism ATTR Blood Proteins - metabolism Communication Correlation analysis Crosslinking Cytotoxicity Escherichia coli - metabolism Fibrils Humans Kinetics linear oligomerization Mutation Nervous system Oligomerization Peptides Polymerization Prealbumin - metabolism Protein Aggregates - physiology Protein interaction Proteins Recombinant Proteins - metabolism Transmission electron microscopy Transthyretin TTR TTR variants |
title | Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligomerization%20Profile%20of%20Human%20Transthyretin%20Variants%20with%20Distinct%20Amyloidogenicity&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Frangolho,%20Ana&rft.date=2020-12-03&rft.volume=25&rft.issue=23&rft.spage=5698&rft.pages=5698-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25235698&rft_dat=%3Cproquest_doaj_%3E2468335924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468032080&rft_id=info:pmid/33287192&rfr_iscdi=true |