Loading…

Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity

One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease develo...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2020-12, Vol.25 (23), p.5698
Main Authors: Frangolho, Ana, Correia, Bruno E, Vaz, Daniela C, Almeida, Zaida L, Brito, Rui M M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33
cites cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33
container_end_page
container_issue 23
container_start_page 5698
container_title Molecules (Basel, Switzerland)
container_volume 25
creator Frangolho, Ana
Correia, Bruno E
Vaz, Daniela C
Almeida, Zaida L
Brito, Rui M M
description One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P > TTRV30M > TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.
doi_str_mv 10.3390/molecules25235698
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56</doaj_id><sourcerecordid>2468335924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</originalsourceid><addsrcrecordid>eNplkk1PGzEQhi0EApryA7hUK3HhkuKP9e76UgkF2iAh0QPlajn2OHHktantbRV-fRdCI2gPM2ON33nkGQ9CpwR_Zkzgiz560IOHTDllvBHdHjomNcVThmux_-Z8hD7kvMaYkprwQ3TEGO1aIugxerjzbhl7SO5JFRdD9T1F6zxU0VbzoVehuk8q5LLaJCguVA8qORVKrn67sqquXB6TulSX_cZHZ-ISgtOubD6iA6t8hpPXOEE_vl7fz-bT27tvN7PL26nmFJcpgLYNUKZpzQxtxGgNYFCiNZpRutCmoWBwTbAQgojOdESAsk2rLQe7YGyCbrZcE9VaPibXq7SRUTn5kohpKVUqTnuQAqgVmi9GKKlbTBSvedcRow0YY3kzsr5sWY_DogejIZSk_Dvo-5vgVnIZf8m2ZVh0z4DzV0CKPwfIRfYua_BeBYhDlrRuOsa4GJudoLN_pOs4pDCO6kWFGcWjmyCyVekUc05gd48hWD5vgPxvA8aaT2-72FX8_XL2B06bsYk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468032080</pqid></control><display><type>article</type><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</creator><creatorcontrib>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</creatorcontrib><description>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P &gt; TTRV30M &gt; TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25235698</identifier><identifier>PMID: 33287192</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Amyloid ; Amyloid - metabolism ; Amyloidogenesis ; Amyloidosis ; Amyloidosis - metabolism ; ATTR ; Blood Proteins - metabolism ; Communication ; Correlation analysis ; Crosslinking ; Cytotoxicity ; Escherichia coli - metabolism ; Fibrils ; Humans ; Kinetics ; linear oligomerization ; Mutation ; Nervous system ; Oligomerization ; Peptides ; Polymerization ; Prealbumin - metabolism ; Protein Aggregates - physiology ; Protein interaction ; Proteins ; Recombinant Proteins - metabolism ; Transmission electron microscopy ; Transthyretin ; TTR ; TTR variants</subject><ispartof>Molecules (Basel, Switzerland), 2020-12, Vol.25 (23), p.5698</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</citedby><cites>FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</cites><orcidid>0000-0001-9128-2557 ; 0000-0002-4097-2766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2468032080/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2468032080?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33287192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frangolho, Ana</creatorcontrib><creatorcontrib>Correia, Bruno E</creatorcontrib><creatorcontrib>Vaz, Daniela C</creatorcontrib><creatorcontrib>Almeida, Zaida L</creatorcontrib><creatorcontrib>Brito, Rui M M</creatorcontrib><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P &gt; TTRV30M &gt; TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</description><subject>Aggregates</subject><subject>Amyloid</subject><subject>Amyloid - metabolism</subject><subject>Amyloidogenesis</subject><subject>Amyloidosis</subject><subject>Amyloidosis - metabolism</subject><subject>ATTR</subject><subject>Blood Proteins - metabolism</subject><subject>Communication</subject><subject>Correlation analysis</subject><subject>Crosslinking</subject><subject>Cytotoxicity</subject><subject>Escherichia coli - metabolism</subject><subject>Fibrils</subject><subject>Humans</subject><subject>Kinetics</subject><subject>linear oligomerization</subject><subject>Mutation</subject><subject>Nervous system</subject><subject>Oligomerization</subject><subject>Peptides</subject><subject>Polymerization</subject><subject>Prealbumin - metabolism</subject><subject>Protein Aggregates - physiology</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Recombinant Proteins - metabolism</subject><subject>Transmission electron microscopy</subject><subject>Transthyretin</subject><subject>TTR</subject><subject>TTR variants</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkk1PGzEQhi0EApryA7hUK3HhkuKP9e76UgkF2iAh0QPlajn2OHHktantbRV-fRdCI2gPM2ON33nkGQ9CpwR_Zkzgiz560IOHTDllvBHdHjomNcVThmux_-Z8hD7kvMaYkprwQ3TEGO1aIugxerjzbhl7SO5JFRdD9T1F6zxU0VbzoVehuk8q5LLaJCguVA8qORVKrn67sqquXB6TulSX_cZHZ-ISgtOubD6iA6t8hpPXOEE_vl7fz-bT27tvN7PL26nmFJcpgLYNUKZpzQxtxGgNYFCiNZpRutCmoWBwTbAQgojOdESAsk2rLQe7YGyCbrZcE9VaPibXq7SRUTn5kohpKVUqTnuQAqgVmi9GKKlbTBSvedcRow0YY3kzsr5sWY_DogejIZSk_Dvo-5vgVnIZf8m2ZVh0z4DzV0CKPwfIRfYua_BeBYhDlrRuOsa4GJudoLN_pOs4pDCO6kWFGcWjmyCyVekUc05gd48hWD5vgPxvA8aaT2-72FX8_XL2B06bsYk</recordid><startdate>20201203</startdate><enddate>20201203</enddate><creator>Frangolho, Ana</creator><creator>Correia, Bruno E</creator><creator>Vaz, Daniela C</creator><creator>Almeida, Zaida L</creator><creator>Brito, Rui M M</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9128-2557</orcidid><orcidid>https://orcid.org/0000-0002-4097-2766</orcidid></search><sort><creationdate>20201203</creationdate><title>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</title><author>Frangolho, Ana ; Correia, Bruno E ; Vaz, Daniela C ; Almeida, Zaida L ; Brito, Rui M M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregates</topic><topic>Amyloid</topic><topic>Amyloid - metabolism</topic><topic>Amyloidogenesis</topic><topic>Amyloidosis</topic><topic>Amyloidosis - metabolism</topic><topic>ATTR</topic><topic>Blood Proteins - metabolism</topic><topic>Communication</topic><topic>Correlation analysis</topic><topic>Crosslinking</topic><topic>Cytotoxicity</topic><topic>Escherichia coli - metabolism</topic><topic>Fibrils</topic><topic>Humans</topic><topic>Kinetics</topic><topic>linear oligomerization</topic><topic>Mutation</topic><topic>Nervous system</topic><topic>Oligomerization</topic><topic>Peptides</topic><topic>Polymerization</topic><topic>Prealbumin - metabolism</topic><topic>Protein Aggregates - physiology</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Recombinant Proteins - metabolism</topic><topic>Transmission electron microscopy</topic><topic>Transthyretin</topic><topic>TTR</topic><topic>TTR variants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frangolho, Ana</creatorcontrib><creatorcontrib>Correia, Bruno E</creatorcontrib><creatorcontrib>Vaz, Daniela C</creatorcontrib><creatorcontrib>Almeida, Zaida L</creatorcontrib><creatorcontrib>Brito, Rui M M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frangolho, Ana</au><au>Correia, Bruno E</au><au>Vaz, Daniela C</au><au>Almeida, Zaida L</au><au>Brito, Rui M M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2020-12-03</date><risdate>2020</risdate><volume>25</volume><issue>23</issue><spage>5698</spage><pages>5698-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>One of the molecular hallmarks of amyloidoses is ordered protein aggregation involving the initial formation of soluble protein oligomers that eventually grow into insoluble fibrils. The identification and characterization of molecular species critical for amyloid fibril formation and disease development have been the focus of intense analysis in the literature. Here, using photo-induced cross-linking of unmodified proteins (PICUP), we studied the early stages of oligomerization of human transthyretin (TTR), a plasma protein involved in amyloid diseases (ATTR amyloidosis) with multiple clinical manifestations. Upon comparison, the oligomerization processes of wild-type TTR (TTRwt) and several TTR variants (TTRV30M, TTRL55P, and TTRT119M) clearly show distinct oligomerization kinetics for the amyloidogenic variants but a similar oligomerization mechanism. The oligomerization kinetics of the TTR amyloidogenic variants under analysis showed a good correlation with their amyloidogenic potential, with the most amyloidogenic variants aggregating faster (TTRL55P &gt; TTRV30M &gt; TTRwt). Moreover, the early stage oligomerization mechanism for these variants involves stepwise addition of monomeric units to the growing oligomer. A completely different behavior was observed for the nonamyloidogenic TTRT119M variant, which does not form oligomers in the same acidic conditions and even for longer incubation times. Thorough characterization of the initial steps of TTR oligomerization is critical for better understanding the origin of ATTR cytotoxicity and developing novel therapeutic strategies for the treatment of ATTR amyloidosis.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33287192</pmid><doi>10.3390/molecules25235698</doi><orcidid>https://orcid.org/0000-0001-9128-2557</orcidid><orcidid>https://orcid.org/0000-0002-4097-2766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2020-12, Vol.25 (23), p.5698
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e2f9c5bbcd14701a545881dcdeddf56
source PubMed (Medline); Publicly Available Content Database
subjects Aggregates
Amyloid
Amyloid - metabolism
Amyloidogenesis
Amyloidosis
Amyloidosis - metabolism
ATTR
Blood Proteins - metabolism
Communication
Correlation analysis
Crosslinking
Cytotoxicity
Escherichia coli - metabolism
Fibrils
Humans
Kinetics
linear oligomerization
Mutation
Nervous system
Oligomerization
Peptides
Polymerization
Prealbumin - metabolism
Protein Aggregates - physiology
Protein interaction
Proteins
Recombinant Proteins - metabolism
Transmission electron microscopy
Transthyretin
TTR
TTR variants
title Oligomerization Profile of Human Transthyretin Variants with Distinct Amyloidogenicity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligomerization%20Profile%20of%20Human%20Transthyretin%20Variants%20with%20Distinct%20Amyloidogenicity&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Frangolho,%20Ana&rft.date=2020-12-03&rft.volume=25&rft.issue=23&rft.spage=5698&rft.pages=5698-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25235698&rft_dat=%3Cproquest_doaj_%3E2468335924%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-eecf6e23c243d269d266e0ea97dc322bcd62ed0410999198d819eaf67cf5efb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468032080&rft_id=info:pmid/33287192&rfr_iscdi=true