Loading…
Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3
The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to gen...
Saved in:
Published in: | Nature communications 2019-08, Vol.10 (1), p.1-7, Article 3783 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 1 |
container_title | Nature communications |
container_volume | 10 |
creator | Zhang, Yang Holder, Tobias Ishizuka, Hiroaki de Juan, Fernando Nagaosa, Naoto Felser, Claudia Yan, Binghai |
description | The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI
3
, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
Two dimensional (2D) material with intriguing physical properties promises advanced electronic and spintronic technologies. Here the authors predict a magnetic photo-galvanic effect (MPGE) in bilayer 2D CrI
3
due to the magnetism-induced asymmetry of the carrier velocity in the band-structure topology. |
doi_str_mv | 10.1038/s41467-019-11832-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e302a02b7944083bcf38cc1e226d259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e302a02b7944083bcf38cc1e226d259</doaj_id><sourcerecordid>2281105659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bgK_f2SChEY-RKnUBrC3HvpnJkMSD7bTi3-NORkBZ4I2t63O-6-tTVS-BvAHC9NvEgUvVEGgbAM1ow55Ul5RwaEBR9vSv80V1ndKBlMVa0Jw_ry4YcNZqAZfV7Zf7Ibu97UasJ7ubMQ-u7pbxe33chxzuwphtqWDfo8v1MNd5j3W-D40fJpzTEGY7no31Jm7Zi-pZb8eE1-f9qvr28cPXzefm5vbTdvP-pnFCs9xQQZFL2gO2ymngltpeIxWqE51vpfJSaEIQhCTgiUdExTUo2RMheq88u6q2K9cHezDHOEw2_jTBDuZUCHFnbCyzjGhaZIRaQjvVck4061zPtHOAlEpPRVtY71bWcekm9A7nHO34CPr4Zh72ZhfujFREMi0L4PUZEMOPBVM205AcjqOdMSzJUKoBiJCnXq_-kR7CEssnPqhUmVkAJ0VFV5WLIaWI_e_HADEP8Zs1flPiN6f4DSsmtppSEc87jH_Q_3H9AjEFr88</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278005140</pqid></control><display><type>article</type><title>Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3</title><source>Publicly Available Content Database</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhang, Yang ; Holder, Tobias ; Ishizuka, Hiroaki ; de Juan, Fernando ; Nagaosa, Naoto ; Felser, Claudia ; Yan, Binghai</creator><creatorcontrib>Zhang, Yang ; Holder, Tobias ; Ishizuka, Hiroaki ; de Juan, Fernando ; Nagaosa, Naoto ; Felser, Claudia ; Yan, Binghai</creatorcontrib><description>The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI
3
, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
Two dimensional (2D) material with intriguing physical properties promises advanced electronic and spintronic technologies. Here the authors predict a magnetic photo-galvanic effect (MPGE) in bilayer 2D CrI
3
due to the magnetism-induced asymmetry of the carrier velocity in the band-structure topology.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-11832-3</identifier><identifier>PMID: 31439851</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/624/400/385 ; Electronic devices ; Hot electrons ; Humanities and Social Sciences ; Light effects ; Magnetic transitions ; Magnetism ; multidisciplinary ; P-n junctions ; Photoconductivity ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Photovoltaic effect ; Photovoltaics ; Science ; Science (multidisciplinary) ; Solar cells</subject><ispartof>Nature communications, 2019-08, Vol.10 (1), p.1-7, Article 3783</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3</citedby><cites>FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3</cites><orcidid>0000-0003-1365-4276 ; 0000-0002-8200-2063 ; 0000-0003-2164-5839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2278005140/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2278005140?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Holder, Tobias</creatorcontrib><creatorcontrib>Ishizuka, Hiroaki</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Yan, Binghai</creatorcontrib><title>Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI
3
, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
Two dimensional (2D) material with intriguing physical properties promises advanced electronic and spintronic technologies. Here the authors predict a magnetic photo-galvanic effect (MPGE) in bilayer 2D CrI
3
due to the magnetism-induced asymmetry of the carrier velocity in the band-structure topology.</description><subject>639/301/119/995</subject><subject>639/624/400/385</subject><subject>Electronic devices</subject><subject>Hot electrons</subject><subject>Humanities and Social Sciences</subject><subject>Light effects</subject><subject>Magnetic transitions</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>P-n junctions</subject><subject>Photoconductivity</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic effect</subject><subject>Photovoltaics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar cells</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtv1DAUhSMEolXpH2AViQ2bgK_f2SChEY-RKnUBrC3HvpnJkMSD7bTi3-NORkBZ4I2t63O-6-tTVS-BvAHC9NvEgUvVEGgbAM1ow55Ul5RwaEBR9vSv80V1ndKBlMVa0Jw_ry4YcNZqAZfV7Zf7Ibu97UasJ7ubMQ-u7pbxe33chxzuwphtqWDfo8v1MNd5j3W-D40fJpzTEGY7no31Jm7Zi-pZb8eE1-f9qvr28cPXzefm5vbTdvP-pnFCs9xQQZFL2gO2ymngltpeIxWqE51vpfJSaEIQhCTgiUdExTUo2RMheq88u6q2K9cHezDHOEw2_jTBDuZUCHFnbCyzjGhaZIRaQjvVck4061zPtHOAlEpPRVtY71bWcekm9A7nHO34CPr4Zh72ZhfujFREMi0L4PUZEMOPBVM205AcjqOdMSzJUKoBiJCnXq_-kR7CEssnPqhUmVkAJ0VFV5WLIaWI_e_HADEP8Zs1flPiN6f4DSsmtppSEc87jH_Q_3H9AjEFr88</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Zhang, Yang</creator><creator>Holder, Tobias</creator><creator>Ishizuka, Hiroaki</creator><creator>de Juan, Fernando</creator><creator>Nagaosa, Naoto</creator><creator>Felser, Claudia</creator><creator>Yan, Binghai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1365-4276</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid></search><sort><creationdate>20190822</creationdate><title>Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3</title><author>Zhang, Yang ; Holder, Tobias ; Ishizuka, Hiroaki ; de Juan, Fernando ; Nagaosa, Naoto ; Felser, Claudia ; Yan, Binghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/995</topic><topic>639/624/400/385</topic><topic>Electronic devices</topic><topic>Hot electrons</topic><topic>Humanities and Social Sciences</topic><topic>Light effects</topic><topic>Magnetic transitions</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>P-n junctions</topic><topic>Photoconductivity</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic effect</topic><topic>Photovoltaics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Holder, Tobias</creatorcontrib><creatorcontrib>Ishizuka, Hiroaki</creatorcontrib><creatorcontrib>de Juan, Fernando</creatorcontrib><creatorcontrib>Nagaosa, Naoto</creatorcontrib><creatorcontrib>Felser, Claudia</creatorcontrib><creatorcontrib>Yan, Binghai</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yang</au><au>Holder, Tobias</au><au>Ishizuka, Hiroaki</au><au>de Juan, Fernando</au><au>Nagaosa, Naoto</au><au>Felser, Claudia</au><au>Yan, Binghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2019-08-22</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>3783</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI
3
, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.
Two dimensional (2D) material with intriguing physical properties promises advanced electronic and spintronic technologies. Here the authors predict a magnetic photo-galvanic effect (MPGE) in bilayer 2D CrI
3
due to the magnetism-induced asymmetry of the carrier velocity in the band-structure topology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31439851</pmid><doi>10.1038/s41467-019-11832-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1365-4276</orcidid><orcidid>https://orcid.org/0000-0002-8200-2063</orcidid><orcidid>https://orcid.org/0000-0003-2164-5839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-08, Vol.10 (1), p.1-7, Article 3783 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e302a02b7944083bcf38cc1e226d259 |
source | Publicly Available Content Database; Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/119/995 639/624/400/385 Electronic devices Hot electrons Humanities and Social Sciences Light effects Magnetic transitions Magnetism multidisciplinary P-n junctions Photoconductivity Photoelectric effect Photoelectric emission Photovoltaic cells Photovoltaic effect Photovoltaics Science Science (multidisciplinary) Solar cells |
title | Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switchable%20magnetic%20bulk%20photovoltaic%20effect%20in%20the%20two-dimensional%20magnet%20CrI3&rft.jtitle=Nature%20communications&rft.au=Zhang,%20Yang&rft.date=2019-08-22&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=3783&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-11832-3&rft_dat=%3Cproquest_doaj_%3E2281105659%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c583t-252e462f1e97c814a2af8e257b5bd967d65800e15601d0deee748176f055fd7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2278005140&rft_id=info:pmid/31439851&rfr_iscdi=true |