Loading…
A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression
•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotrans...
Saved in:
Published in: | Geoderma 2023-11, Vol.439, p.116674, Article 116674 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883 |
---|---|
cites | cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883 |
container_end_page | |
container_issue | |
container_start_page | 116674 |
container_title | Geoderma |
container_volume | 439 |
creator | Arbor, Adrienne Schmidt, Margaret Saurette, Daniel Zhang, Jin Bulmer, Chuck Filatow, Deepa Kasraei, Babak Smukler, Sean Heung, Brandon |
description | •Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions.
Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy. |
doi_str_mv | 10.1016/j.geoderma.2023.116674 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706123003518</els_id><doaj_id>oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b</doaj_id><sourcerecordid>3153162857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</originalsourceid><addsrcrecordid>eNqFkcGOFCEQhonRxHH1FQxHLz0C3Q30zc1G10028aJnAnQxYeyB2YLW7BP42jL26tUTgfr_r4r6CXnL2Z4zLt8f9wfIM-DJ7gUT_Z5zKdXwjOy4VqKTYpyekx1ryk4xyV-SV6Uc21UxwXbk1zUNaE_wM-N3GjJSBG-X6NDWmA70DHOuaFMJgDSsydeYU6FruRRTTktMYJEuYEul5WG1CIXaNFMoNZ42RnMBVhtTfXwyNl2qcYHW7NAMpTFfkxfBLgXePJ1X5Nunj19vPnf3X27vbq7vOztoUbuJ6dELMcnAnZqD6GftHZdBun5wbrBaCuZhnNTAgu79KP0k5MjCqAflhNb9FbnbuHO2R3PGNiQ-mmyj-fOQ8WAs1ugXMBP0swqBBQV60CHocZKc93riTnA3uMZ6t7HOmB_W9mNzisXDstgEeS2m52PPpdCjalK5ST3mUhDCv9acmUuK5mj-pmguKZotxWb8sBmhLeVHBDTFR2gbnWNLqrap4_8QvwG-U6xf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153162857</pqid></control><display><type>article</type><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><source>ScienceDirect Journals</source><creator>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</creator><creatorcontrib>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</creatorcontrib><description>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions.
Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2023.116674</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>British Columbia ; case studies ; data collection ; domain ; Model recalibration ; Model validation ; Nonlinear least squares ; Ontario ; organic carbon ; Pedotransfer functions ; prediction ; Quantile regression ; regression analysis ; Soil bulk density ; soil density ; soil profiles ; uncertainty ; Uncertainty analysis</subject><ispartof>Geoderma, 2023-11, Vol.439, p.116674, Article 116674</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</citedby><cites>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</cites><orcidid>0000-0002-1971-1238 ; 0000-0002-6968-2092 ; 0000-0002-6113-3179 ; 0000-0002-7184-648X ; 0000-0001-5187-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Arbor, Adrienne</creatorcontrib><creatorcontrib>Schmidt, Margaret</creatorcontrib><creatorcontrib>Saurette, Daniel</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Bulmer, Chuck</creatorcontrib><creatorcontrib>Filatow, Deepa</creatorcontrib><creatorcontrib>Kasraei, Babak</creatorcontrib><creatorcontrib>Smukler, Sean</creatorcontrib><creatorcontrib>Heung, Brandon</creatorcontrib><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><title>Geoderma</title><description>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions.
Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</description><subject>British Columbia</subject><subject>case studies</subject><subject>data collection</subject><subject>domain</subject><subject>Model recalibration</subject><subject>Model validation</subject><subject>Nonlinear least squares</subject><subject>Ontario</subject><subject>organic carbon</subject><subject>Pedotransfer functions</subject><subject>prediction</subject><subject>Quantile regression</subject><subject>regression analysis</subject><subject>Soil bulk density</subject><subject>soil density</subject><subject>soil profiles</subject><subject>uncertainty</subject><subject>Uncertainty analysis</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkcGOFCEQhonRxHH1FQxHLz0C3Q30zc1G10028aJnAnQxYeyB2YLW7BP42jL26tUTgfr_r4r6CXnL2Z4zLt8f9wfIM-DJ7gUT_Z5zKdXwjOy4VqKTYpyekx1ryk4xyV-SV6Uc21UxwXbk1zUNaE_wM-N3GjJSBG-X6NDWmA70DHOuaFMJgDSsydeYU6FruRRTTktMYJEuYEul5WG1CIXaNFMoNZ42RnMBVhtTfXwyNl2qcYHW7NAMpTFfkxfBLgXePJ1X5Nunj19vPnf3X27vbq7vOztoUbuJ6dELMcnAnZqD6GftHZdBun5wbrBaCuZhnNTAgu79KP0k5MjCqAflhNb9FbnbuHO2R3PGNiQ-mmyj-fOQ8WAs1ugXMBP0swqBBQV60CHocZKc93riTnA3uMZ6t7HOmB_W9mNzisXDstgEeS2m52PPpdCjalK5ST3mUhDCv9acmUuK5mj-pmguKZotxWb8sBmhLeVHBDTFR2gbnWNLqrap4_8QvwG-U6xf</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Arbor, Adrienne</creator><creator>Schmidt, Margaret</creator><creator>Saurette, Daniel</creator><creator>Zhang, Jin</creator><creator>Bulmer, Chuck</creator><creator>Filatow, Deepa</creator><creator>Kasraei, Babak</creator><creator>Smukler, Sean</creator><creator>Heung, Brandon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1971-1238</orcidid><orcidid>https://orcid.org/0000-0002-6968-2092</orcidid><orcidid>https://orcid.org/0000-0002-6113-3179</orcidid><orcidid>https://orcid.org/0000-0002-7184-648X</orcidid><orcidid>https://orcid.org/0000-0001-5187-2683</orcidid></search><sort><creationdate>202311</creationdate><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><author>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>British Columbia</topic><topic>case studies</topic><topic>data collection</topic><topic>domain</topic><topic>Model recalibration</topic><topic>Model validation</topic><topic>Nonlinear least squares</topic><topic>Ontario</topic><topic>organic carbon</topic><topic>Pedotransfer functions</topic><topic>prediction</topic><topic>Quantile regression</topic><topic>regression analysis</topic><topic>Soil bulk density</topic><topic>soil density</topic><topic>soil profiles</topic><topic>uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arbor, Adrienne</creatorcontrib><creatorcontrib>Schmidt, Margaret</creatorcontrib><creatorcontrib>Saurette, Daniel</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Bulmer, Chuck</creatorcontrib><creatorcontrib>Filatow, Deepa</creatorcontrib><creatorcontrib>Kasraei, Babak</creatorcontrib><creatorcontrib>Smukler, Sean</creatorcontrib><creatorcontrib>Heung, Brandon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arbor, Adrienne</au><au>Schmidt, Margaret</au><au>Saurette, Daniel</au><au>Zhang, Jin</au><au>Bulmer, Chuck</au><au>Filatow, Deepa</au><au>Kasraei, Babak</au><au>Smukler, Sean</au><au>Heung, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</atitle><jtitle>Geoderma</jtitle><date>2023-11</date><risdate>2023</risdate><volume>439</volume><spage>116674</spage><pages>116674-</pages><artnum>116674</artnum><issn>0016-7061</issn><eissn>1872-6259</eissn><abstract>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions.
Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2023.116674</doi><orcidid>https://orcid.org/0000-0002-1971-1238</orcidid><orcidid>https://orcid.org/0000-0002-6968-2092</orcidid><orcidid>https://orcid.org/0000-0002-6113-3179</orcidid><orcidid>https://orcid.org/0000-0002-7184-648X</orcidid><orcidid>https://orcid.org/0000-0001-5187-2683</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7061 |
ispartof | Geoderma, 2023-11, Vol.439, p.116674, Article 116674 |
issn | 0016-7061 1872-6259 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b |
source | ScienceDirect Journals |
subjects | British Columbia case studies data collection domain Model recalibration Model validation Nonlinear least squares Ontario organic carbon Pedotransfer functions prediction Quantile regression regression analysis Soil bulk density soil density soil profiles uncertainty Uncertainty analysis |
title | A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20recalibrating%20pedotransfer%20functions%20using%20nonlinear%20least%20squares%20and%20estimating%20uncertainty%20using%20quantile%20regression&rft.jtitle=Geoderma&rft.au=Arbor,%20Adrienne&rft.date=2023-11&rft.volume=439&rft.spage=116674&rft.pages=116674-&rft.artnum=116674&rft.issn=0016-7061&rft.eissn=1872-6259&rft_id=info:doi/10.1016/j.geoderma.2023.116674&rft_dat=%3Cproquest_doaj_%3E3153162857%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153162857&rft_id=info:pmid/&rfr_iscdi=true |