Loading…

A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression

•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotrans...

Full description

Saved in:
Bibliographic Details
Published in:Geoderma 2023-11, Vol.439, p.116674, Article 116674
Main Authors: Arbor, Adrienne, Schmidt, Margaret, Saurette, Daniel, Zhang, Jin, Bulmer, Chuck, Filatow, Deepa, Kasraei, Babak, Smukler, Sean, Heung, Brandon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883
cites cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883
container_end_page
container_issue
container_start_page 116674
container_title Geoderma
container_volume 439
creator Arbor, Adrienne
Schmidt, Margaret
Saurette, Daniel
Zhang, Jin
Bulmer, Chuck
Filatow, Deepa
Kasraei, Babak
Smukler, Sean
Heung, Brandon
description •Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions. Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.
doi_str_mv 10.1016/j.geoderma.2023.116674
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706123003518</els_id><doaj_id>oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b</doaj_id><sourcerecordid>3153162857</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</originalsourceid><addsrcrecordid>eNqFkcGOFCEQhonRxHH1FQxHLz0C3Q30zc1G10028aJnAnQxYeyB2YLW7BP42jL26tUTgfr_r4r6CXnL2Z4zLt8f9wfIM-DJ7gUT_Z5zKdXwjOy4VqKTYpyekx1ryk4xyV-SV6Uc21UxwXbk1zUNaE_wM-N3GjJSBG-X6NDWmA70DHOuaFMJgDSsydeYU6FruRRTTktMYJEuYEul5WG1CIXaNFMoNZ42RnMBVhtTfXwyNl2qcYHW7NAMpTFfkxfBLgXePJ1X5Nunj19vPnf3X27vbq7vOztoUbuJ6dELMcnAnZqD6GftHZdBun5wbrBaCuZhnNTAgu79KP0k5MjCqAflhNb9FbnbuHO2R3PGNiQ-mmyj-fOQ8WAs1ugXMBP0swqBBQV60CHocZKc93riTnA3uMZ6t7HOmB_W9mNzisXDstgEeS2m52PPpdCjalK5ST3mUhDCv9acmUuK5mj-pmguKZotxWb8sBmhLeVHBDTFR2gbnWNLqrap4_8QvwG-U6xf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153162857</pqid></control><display><type>article</type><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><source>ScienceDirect Journals</source><creator>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</creator><creatorcontrib>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</creatorcontrib><description>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions. Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2023.116674</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>British Columbia ; case studies ; data collection ; domain ; Model recalibration ; Model validation ; Nonlinear least squares ; Ontario ; organic carbon ; Pedotransfer functions ; prediction ; Quantile regression ; regression analysis ; Soil bulk density ; soil density ; soil profiles ; uncertainty ; Uncertainty analysis</subject><ispartof>Geoderma, 2023-11, Vol.439, p.116674, Article 116674</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</citedby><cites>FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</cites><orcidid>0000-0002-1971-1238 ; 0000-0002-6968-2092 ; 0000-0002-6113-3179 ; 0000-0002-7184-648X ; 0000-0001-5187-2683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Arbor, Adrienne</creatorcontrib><creatorcontrib>Schmidt, Margaret</creatorcontrib><creatorcontrib>Saurette, Daniel</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Bulmer, Chuck</creatorcontrib><creatorcontrib>Filatow, Deepa</creatorcontrib><creatorcontrib>Kasraei, Babak</creatorcontrib><creatorcontrib>Smukler, Sean</creatorcontrib><creatorcontrib>Heung, Brandon</creatorcontrib><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><title>Geoderma</title><description>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions. Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</description><subject>British Columbia</subject><subject>case studies</subject><subject>data collection</subject><subject>domain</subject><subject>Model recalibration</subject><subject>Model validation</subject><subject>Nonlinear least squares</subject><subject>Ontario</subject><subject>organic carbon</subject><subject>Pedotransfer functions</subject><subject>prediction</subject><subject>Quantile regression</subject><subject>regression analysis</subject><subject>Soil bulk density</subject><subject>soil density</subject><subject>soil profiles</subject><subject>uncertainty</subject><subject>Uncertainty analysis</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkcGOFCEQhonRxHH1FQxHLz0C3Q30zc1G10028aJnAnQxYeyB2YLW7BP42jL26tUTgfr_r4r6CXnL2Z4zLt8f9wfIM-DJ7gUT_Z5zKdXwjOy4VqKTYpyekx1ryk4xyV-SV6Uc21UxwXbk1zUNaE_wM-N3GjJSBG-X6NDWmA70DHOuaFMJgDSsydeYU6FruRRTTktMYJEuYEul5WG1CIXaNFMoNZ42RnMBVhtTfXwyNl2qcYHW7NAMpTFfkxfBLgXePJ1X5Nunj19vPnf3X27vbq7vOztoUbuJ6dELMcnAnZqD6GftHZdBun5wbrBaCuZhnNTAgu79KP0k5MjCqAflhNb9FbnbuHO2R3PGNiQ-mmyj-fOQ8WAs1ugXMBP0swqBBQV60CHocZKc93riTnA3uMZ6t7HOmB_W9mNzisXDstgEeS2m52PPpdCjalK5ST3mUhDCv9acmUuK5mj-pmguKZotxWb8sBmhLeVHBDTFR2gbnWNLqrap4_8QvwG-U6xf</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Arbor, Adrienne</creator><creator>Schmidt, Margaret</creator><creator>Saurette, Daniel</creator><creator>Zhang, Jin</creator><creator>Bulmer, Chuck</creator><creator>Filatow, Deepa</creator><creator>Kasraei, Babak</creator><creator>Smukler, Sean</creator><creator>Heung, Brandon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1971-1238</orcidid><orcidid>https://orcid.org/0000-0002-6968-2092</orcidid><orcidid>https://orcid.org/0000-0002-6113-3179</orcidid><orcidid>https://orcid.org/0000-0002-7184-648X</orcidid><orcidid>https://orcid.org/0000-0001-5187-2683</orcidid></search><sort><creationdate>202311</creationdate><title>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</title><author>Arbor, Adrienne ; Schmidt, Margaret ; Saurette, Daniel ; Zhang, Jin ; Bulmer, Chuck ; Filatow, Deepa ; Kasraei, Babak ; Smukler, Sean ; Heung, Brandon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>British Columbia</topic><topic>case studies</topic><topic>data collection</topic><topic>domain</topic><topic>Model recalibration</topic><topic>Model validation</topic><topic>Nonlinear least squares</topic><topic>Ontario</topic><topic>organic carbon</topic><topic>Pedotransfer functions</topic><topic>prediction</topic><topic>Quantile regression</topic><topic>regression analysis</topic><topic>Soil bulk density</topic><topic>soil density</topic><topic>soil profiles</topic><topic>uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arbor, Adrienne</creatorcontrib><creatorcontrib>Schmidt, Margaret</creatorcontrib><creatorcontrib>Saurette, Daniel</creatorcontrib><creatorcontrib>Zhang, Jin</creatorcontrib><creatorcontrib>Bulmer, Chuck</creatorcontrib><creatorcontrib>Filatow, Deepa</creatorcontrib><creatorcontrib>Kasraei, Babak</creatorcontrib><creatorcontrib>Smukler, Sean</creatorcontrib><creatorcontrib>Heung, Brandon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arbor, Adrienne</au><au>Schmidt, Margaret</au><au>Saurette, Daniel</au><au>Zhang, Jin</au><au>Bulmer, Chuck</au><au>Filatow, Deepa</au><au>Kasraei, Babak</au><au>Smukler, Sean</au><au>Heung, Brandon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression</atitle><jtitle>Geoderma</jtitle><date>2023-11</date><risdate>2023</risdate><volume>439</volume><spage>116674</spage><pages>116674-</pages><artnum>116674</artnum><issn>0016-7061</issn><eissn>1872-6259</eissn><abstract>•Applying Nonlinear Least Squares to recalibrate equation-based pedotransfer functions.•Recalibration increases performance of pedotransfer functions.•Quantile regression provides uncertainty estimates for pedotransfer functions.•Use of larger datasets decreases uncertainty in recalibrated pedotransfer functions. Pedotransfer functions (PTFs) have been developed for many regions to estimate values missing from soil profile databases. However, globally there are many areas without existing PTFs, and it is not advisable to use PTFs outside their domain of development due to poor performance. Further, developed PTFs often lack accompanying uncertainty estimations. To address these issues, a framework is proposed where existing equation-based PTFs are recalibrated using a nonlinear least squares (NLS) approach and validated on two regions of Canada; this process is coupled with the use of quantile regression (QR) to generate uncertainty estimates. Many PTFs have been developed to predict soil bulk density, so this variable is used as a case study to evaluate the outcome of recalibration. New coefficients are generated for existing soil bulk density PTFs, and the performance of these PTFs is validated using three case study datasets, one from the Ottawa region of Ontario and two from the province of British Columbia, Canada. The improvement of the performance of the recalibrated PTFs is evaluated using root mean square error (RMSE) and the concordance correlation coefficient (CCC). Uncertainty estimates produced using QR are communicated through the mean prediction interval (MPI) and prediction interval coverage probability (PICP) graphs. This framework produces dataset-specific PTFs with improved accuracy and minimized uncertainty, and the method can be applied to other regional datasets to improve the estimations of existing PTF model forms. The methods are most successful with large datasets and PTFs with fewer variables and minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole input variable resulted in the highest accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2023.116674</doi><orcidid>https://orcid.org/0000-0002-1971-1238</orcidid><orcidid>https://orcid.org/0000-0002-6968-2092</orcidid><orcidid>https://orcid.org/0000-0002-6113-3179</orcidid><orcidid>https://orcid.org/0000-0002-7184-648X</orcidid><orcidid>https://orcid.org/0000-0001-5187-2683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-7061
ispartof Geoderma, 2023-11, Vol.439, p.116674, Article 116674
issn 0016-7061
1872-6259
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e3d7ff0f7e848ff8596113891b21b4b
source ScienceDirect Journals
subjects British Columbia
case studies
data collection
domain
Model recalibration
Model validation
Nonlinear least squares
Ontario
organic carbon
Pedotransfer functions
prediction
Quantile regression
regression analysis
Soil bulk density
soil density
soil profiles
uncertainty
Uncertainty analysis
title A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20recalibrating%20pedotransfer%20functions%20using%20nonlinear%20least%20squares%20and%20estimating%20uncertainty%20using%20quantile%20regression&rft.jtitle=Geoderma&rft.au=Arbor,%20Adrienne&rft.date=2023-11&rft.volume=439&rft.spage=116674&rft.pages=116674-&rft.artnum=116674&rft.issn=0016-7061&rft.eissn=1872-6259&rft_id=info:doi/10.1016/j.geoderma.2023.116674&rft_dat=%3Cproquest_doaj_%3E3153162857%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a482t-9085c2296f1b7df23d8cb16f6b34bb4a8620ce59740f83c56c92650f5847b2883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153162857&rft_id=info:pmid/&rfr_iscdi=true