Loading…

Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression

This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This appr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.86-95-807
Main Authors: Akandwanaho, Stephen M., Adewumi, Aderemi Oluyinka, Adebiyi, Ayodele Ariyo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53
cites cdi_FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53
container_end_page 95-807
container_issue 2014
container_start_page 86
container_title Journal of Applied Mathematics
container_volume 2014
creator Akandwanaho, Stephen M.
Adewumi, Aderemi Oluyinka
Adebiyi, Ayodele Ariyo
description This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP) tour and less computational time in nonstationary conditions.
doi_str_mv 10.1155/2014/818529
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e438cc5c6fa4e44b3dce1edfe3dca09</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160908001_201412_201609190040_201609190040_86_95_807</airiti_id><doaj_id>oai_doaj_org_article_9e438cc5c6fa4e44b3dce1edfe3dca09</doaj_id><sourcerecordid>3447742231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53</originalsourceid><addsrcrecordid>eNqFks1vEzEQxVcIJErhxBkpEhcECp3x2l77BgpQKkVQ0UTiZk28s8HRfhQ7Kep_j9ONAuXCaew3Pz0_e1wUzxHeIip1JgDlmUGjhH1QnKA21RRAiod5jQjTSlXfHxdPUtoACFAWT4rF1dDehH49-XDbUxf8ZBHphtu9ckUtp476yWUcVi13k2X6GzynXUphbHtOafKN1zHXMPRPi0cNtYmfHeppsfz0cTH7PJ1_Pb-YvZ9PSRmxnVrlGy5NqVamAfaCPCODRcNlybKpUVgmalasVnVOWwlW4FUjNHnUilV5WlyMvvVAG3cdQ0fx1g0U3J0wxLWjuA2-ZWdZlsZ75XVDkqVclfX-tDoHqD2BzV7vRq_rOGzYb3nn21DfM50t5wf1UDbUOZQosNJS6Wzx6mjxc8dp67qQPLct9TzskkMlUUpjtMjoy3_QzbCLfX6sTGmtSm3t_n5vRsrHIaXIzTEOgtsP3O0H7saBZ_r1SP8IfU2_wn_gFyPMGeGGjrACUAZz_8vYpxDDNvyJd5ldNFgwAHjniMKNEtr81-D-xmhnlTNQlb8B7ubKVQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566536995</pqid></control><display><type>article</type><title>Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Akandwanaho, Stephen M. ; Adewumi, Aderemi Oluyinka ; Adebiyi, Ayodele Ariyo</creator><contributor>Ali, M. Montaz</contributor><creatorcontrib>Akandwanaho, Stephen M. ; Adewumi, Aderemi Oluyinka ; Adebiyi, Ayodele Ariyo ; Ali, M. Montaz</creatorcontrib><description>This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP) tour and less computational time in nonstationary conditions.</description><identifier>ISSN: 1110-757X</identifier><identifier>EISSN: 1687-0042</identifier><identifier>DOI: 10.1155/2014/818529</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Dynamics ; Gaussian ; Heuristic ; Mathematical analysis ; Mathematical models ; Neural networks ; Optimization ; Regression ; Studies ; Tours ; Traveling salesman problem</subject><ispartof>Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.86-95-807</ispartof><rights>Copyright © 2014 Stephen M. Akandwanaho et al.</rights><rights>Copyright © 2014 Stephen M. Akandwanaho et al. Stephen M. Akandwanaho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53</citedby><cites>FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1566536995/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1566536995?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Ali, M. Montaz</contributor><creatorcontrib>Akandwanaho, Stephen M.</creatorcontrib><creatorcontrib>Adewumi, Aderemi Oluyinka</creatorcontrib><creatorcontrib>Adebiyi, Ayodele Ariyo</creatorcontrib><title>Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression</title><title>Journal of Applied Mathematics</title><description>This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP) tour and less computational time in nonstationary conditions.</description><subject>Dynamics</subject><subject>Gaussian</subject><subject>Heuristic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regression</subject><subject>Studies</subject><subject>Tours</subject><subject>Traveling salesman problem</subject><issn>1110-757X</issn><issn>1687-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1vEzEQxVcIJErhxBkpEhcECp3x2l77BgpQKkVQ0UTiZk28s8HRfhQ7Kep_j9ONAuXCaew3Pz0_e1wUzxHeIip1JgDlmUGjhH1QnKA21RRAiod5jQjTSlXfHxdPUtoACFAWT4rF1dDehH49-XDbUxf8ZBHphtu9ckUtp476yWUcVi13k2X6GzynXUphbHtOafKN1zHXMPRPi0cNtYmfHeppsfz0cTH7PJ1_Pb-YvZ9PSRmxnVrlGy5NqVamAfaCPCODRcNlybKpUVgmalasVnVOWwlW4FUjNHnUilV5WlyMvvVAG3cdQ0fx1g0U3J0wxLWjuA2-ZWdZlsZ75XVDkqVclfX-tDoHqD2BzV7vRq_rOGzYb3nn21DfM50t5wf1UDbUOZQosNJS6Wzx6mjxc8dp67qQPLct9TzskkMlUUpjtMjoy3_QzbCLfX6sTGmtSm3t_n5vRsrHIaXIzTEOgtsP3O0H7saBZ_r1SP8IfU2_wn_gFyPMGeGGjrACUAZz_8vYpxDDNvyJd5ldNFgwAHjniMKNEtr81-D-xmhnlTNQlb8B7ubKVQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Akandwanaho, Stephen M.</creator><creator>Adewumi, Aderemi Oluyinka</creator><creator>Adebiyi, Ayodele Ariyo</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression</title><author>Akandwanaho, Stephen M. ; Adewumi, Aderemi Oluyinka ; Adebiyi, Ayodele Ariyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dynamics</topic><topic>Gaussian</topic><topic>Heuristic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regression</topic><topic>Studies</topic><topic>Tours</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akandwanaho, Stephen M.</creatorcontrib><creatorcontrib>Adewumi, Aderemi Oluyinka</creatorcontrib><creatorcontrib>Adebiyi, Ayodele Ariyo</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akandwanaho, Stephen M.</au><au>Adewumi, Aderemi Oluyinka</au><au>Adebiyi, Ayodele Ariyo</au><au>Ali, M. Montaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression</atitle><jtitle>Journal of Applied Mathematics</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>86</spage><epage>95-807</epage><pages>86-95-807</pages><issn>1110-757X</issn><eissn>1687-0042</eissn><abstract>This paper solves the dynamic traveling salesman problem (DTSP) using dynamic Gaussian Process Regression (DGPR) method. The problem of varying correlation tour is alleviated by the nonstationary covariance function interleaved with DGPR to generate a predictive distribution for DTSP tour. This approach is conjoined with Nearest Neighbor (NN) method and the iterated local search to track dynamic optima. Experimental results were obtained on DTSP instances. The comparisons were performed with Genetic Algorithm and Simulated Annealing. The proposed approach demonstrates superiority in finding good traveling salesman problem (TSP) tour and less computational time in nonstationary conditions.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2014/818529</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-757X
ispartof Journal of Applied Mathematics, 2014-01, Vol.2014 (2014), p.86-95-807
issn 1110-757X
1687-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e438cc5c6fa4e44b3dce1edfe3dca09
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database; IngentaConnect Journals
subjects Dynamics
Gaussian
Heuristic
Mathematical analysis
Mathematical models
Neural networks
Optimization
Regression
Studies
Tours
Traveling salesman problem
title Solving Dynamic Traveling Salesman Problem Using Dynamic Gaussian Process Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Dynamic%20Traveling%20Salesman%20Problem%20Using%20Dynamic%20Gaussian%20Process%20Regression&rft.jtitle=Journal%20of%20Applied%20Mathematics&rft.au=Akandwanaho,%20Stephen%20M.&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=86&rft.epage=95-807&rft.pages=86-95-807&rft.issn=1110-757X&rft.eissn=1687-0042&rft_id=info:doi/10.1155/2014/818529&rft_dat=%3Cproquest_doaj_%3E3447742231%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a582t-95cfe3835b8f0ec2ace1e0918e33e4fd129eaafbe5bd05972e50c5f26ac165e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1566536995&rft_id=info:pmid/&rft_airiti_id=P20160908001_201412_201609190040_201609190040_86_95_807&rfr_iscdi=true