Loading…

Tailoring the corrosion and tribological performance of Ti-modified MoS2-based films in simulated seawater

Film protection has become a crucial means to improve the corrosion and wear performance of key components in aggressive environment. In this study, the feasibility of using MoS2-based modified films in artificial seawater (3.5% NaCl solution) was evaluated by co-deposition of Ti to produce Ti–MoS2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology 2022-11, Vol.21, p.576-589
Main Authors: Shi, Xiangru, He, Peihua, Sun, Shangqi, Chen, Jian, Beake, Ben D., Liskiewicz, Tomasz W., Zhang, Xin, Zhou, Zehua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Film protection has become a crucial means to improve the corrosion and wear performance of key components in aggressive environment. In this study, the feasibility of using MoS2-based modified films in artificial seawater (3.5% NaCl solution) was evaluated by co-deposition of Ti to produce Ti–MoS2 composite and Ti/MoS2 multilayer films. The microstructure, wettability, mechanical, tribological and corrosion behavior of the Ti-modified MoS2-based films was contrasted to pure MoS2 film. The results show that the incorporation of Ti not only improves densification, but also promotes a transformation from a columnar to an amorphous film structure, leading to the improvement of mechanical properties of Ti–MoS2 composite film and Ti/MoS2 multilayer film. The friction coefficient curves of all of the three MoS2-based film in 3.5 wt% NaCl solution show stable values during the sliding process. The advantage of the preferential (002) growth orientation, improved mechanical properties and reduced hydrophobicity for both of the Ti-modified MoS2 films caused the decreased friction coefficient and wear rate in NaCl solution. The electrochemical results before and after friction show that the ranking of corrosion resistance is Ti/MoS2 multilayer > Ti–MoS2 composite film > pure MoS2 film, which is attributed to the compact microstructure and the presence of surface passive films.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2022.09.061