Loading…
Tailoring the corrosion and tribological performance of Ti-modified MoS2-based films in simulated seawater
Film protection has become a crucial means to improve the corrosion and wear performance of key components in aggressive environment. In this study, the feasibility of using MoS2-based modified films in artificial seawater (3.5% NaCl solution) was evaluated by co-deposition of Ti to produce Ti–MoS2...
Saved in:
Published in: | Journal of materials research and technology 2022-11, Vol.21, p.576-589 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Film protection has become a crucial means to improve the corrosion and wear performance of key components in aggressive environment. In this study, the feasibility of using MoS2-based modified films in artificial seawater (3.5% NaCl solution) was evaluated by co-deposition of Ti to produce Ti–MoS2 composite and Ti/MoS2 multilayer films. The microstructure, wettability, mechanical, tribological and corrosion behavior of the Ti-modified MoS2-based films was contrasted to pure MoS2 film. The results show that the incorporation of Ti not only improves densification, but also promotes a transformation from a columnar to an amorphous film structure, leading to the improvement of mechanical properties of Ti–MoS2 composite film and Ti/MoS2 multilayer film. The friction coefficient curves of all of the three MoS2-based film in 3.5 wt% NaCl solution show stable values during the sliding process. The advantage of the preferential (002) growth orientation, improved mechanical properties and reduced hydrophobicity for both of the Ti-modified MoS2 films caused the decreased friction coefficient and wear rate in NaCl solution. The electrochemical results before and after friction show that the ranking of corrosion resistance is Ti/MoS2 multilayer > Ti–MoS2 composite film > pure MoS2 film, which is attributed to the compact microstructure and the presence of surface passive films. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2022.09.061 |