Loading…
Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk
The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The t...
Saved in:
Published in: | Mathematics (Basel) 2022-05, Vol.10 (10), p.1658 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163 |
---|---|
cites | cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163 |
container_end_page | |
container_issue | 10 |
container_start_page | 1658 |
container_title | Mathematics (Basel) |
container_volume | 10 |
creator | Waini, Iskandar Khashi’ie, Najiyah Safwa Kasim, Abdul Rahman Mohd Zainal, Nurul Amira Hamzah, Khairum Bin Md Arifin, Norihan Pop, Ioan |
description | The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%. |
doi_str_mv | 10.3390/math10101658 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c</doaj_id><sourcerecordid>2670218351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqb35AwJeFFxNstkke5TWWqFFkPYcsvlot7abmuwi---NVqQzMPOYGd7M8AC4xughz0v0uFftBqPkrBBnYEAI4RlPjfMTfAlGMW5RshLngpYDsFw1sbXK9HCh1o1t_aY3wZu-UftaR3i7mE3u4HTnv6B3cNZXoTZwakPwbtclOOksbD1U8N23qq2bNZzU8eMKXDi1i3b0l4dgNX1ejmfZ_O3ldfw0zzQRRGSUcl0hpqktSs5yS41lrESC03QwQZVFTmDDK5SiSc2KMiNEeq_AOROY5UPweuQ1Xm3lIdR7FXrpVS1_Cz6spQptrXdWlpY7VDmLnRO0MlxQLlyJNEFUO1PoxHVz5DoE_9nZ2Mqt70KTzpeEcUSwyNPaIbg_TungYwzW_W_FSP7IIE9lyL8BnUp4Wg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670218351</pqid></control><display><type>article</type><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</creator><creatorcontrib>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</creatorcontrib><description>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10101658</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary layer thickness ; Coefficient of friction ; Conductivity ; Differential equations ; Energy storage ; Ferrofluids ; Fluid flow ; Friction reduction ; Heat conductivity ; Heat transfer ; hybrid ferrofluid ; Investigations ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Magnetohydrodynamics ; Mathematical models ; Mathematics ; Nanoparticles ; Ordinary differential equations ; Parameters ; rotating disk ; Rotating disks ; Skin friction ; stability analysis ; Temperature distribution ; Temperature profiles ; unsteady flow</subject><ispartof>Mathematics (Basel), 2022-05, Vol.10 (10), p.1658</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</citedby><cites>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</cites><orcidid>0000-0003-3045-302X ; 0000-0003-0332-7853 ; 0000-0002-9092-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670218351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670218351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Md Arifin, Norihan</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><title>Mathematics (Basel)</title><description>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</description><subject>Boundary layer thickness</subject><subject>Coefficient of friction</subject><subject>Conductivity</subject><subject>Differential equations</subject><subject>Energy storage</subject><subject>Ferrofluids</subject><subject>Fluid flow</subject><subject>Friction reduction</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hybrid ferrofluid</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nanoparticles</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>rotating disk</subject><subject>Rotating disks</subject><subject>Skin friction</subject><subject>stability analysis</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>unsteady flow</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqb35AwJeFFxNstkke5TWWqFFkPYcsvlot7abmuwi---NVqQzMPOYGd7M8AC4xughz0v0uFftBqPkrBBnYEAI4RlPjfMTfAlGMW5RshLngpYDsFw1sbXK9HCh1o1t_aY3wZu-UftaR3i7mE3u4HTnv6B3cNZXoTZwakPwbtclOOksbD1U8N23qq2bNZzU8eMKXDi1i3b0l4dgNX1ejmfZ_O3ldfw0zzQRRGSUcl0hpqktSs5yS41lrESC03QwQZVFTmDDK5SiSc2KMiNEeq_AOROY5UPweuQ1Xm3lIdR7FXrpVS1_Cz6spQptrXdWlpY7VDmLnRO0MlxQLlyJNEFUO1PoxHVz5DoE_9nZ2Mqt70KTzpeEcUSwyNPaIbg_TungYwzW_W_FSP7IIE9lyL8BnUp4Wg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Waini, Iskandar</creator><creator>Khashi’ie, Najiyah Safwa</creator><creator>Kasim, Abdul Rahman Mohd</creator><creator>Zainal, Nurul Amira</creator><creator>Hamzah, Khairum Bin</creator><creator>Md Arifin, Norihan</creator><creator>Pop, Ioan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid></search><sort><creationdate>20220501</creationdate><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><author>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layer thickness</topic><topic>Coefficient of friction</topic><topic>Conductivity</topic><topic>Differential equations</topic><topic>Energy storage</topic><topic>Ferrofluids</topic><topic>Fluid flow</topic><topic>Friction reduction</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hybrid ferrofluid</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nanoparticles</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>rotating disk</topic><topic>Rotating disks</topic><topic>Skin friction</topic><topic>stability analysis</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Md Arifin, Norihan</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waini, Iskandar</au><au>Khashi’ie, Najiyah Safwa</au><au>Kasim, Abdul Rahman Mohd</au><au>Zainal, Nurul Amira</au><au>Hamzah, Khairum Bin</au><au>Md Arifin, Norihan</au><au>Pop, Ioan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><spage>1658</spage><pages>1658-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10101658</doi><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2022-05, Vol.10 (10), p.1658 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Boundary layer thickness Coefficient of friction Conductivity Differential equations Energy storage Ferrofluids Fluid flow Friction reduction Heat conductivity Heat transfer hybrid ferrofluid Investigations Magnetic fields Magnetic flux Magnetic properties Magnetohydrodynamics Mathematical models Mathematics Nanoparticles Ordinary differential equations Parameters rotating disk Rotating disks Skin friction stability analysis Temperature distribution Temperature profiles unsteady flow |
title | Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20Magnetohydrodynamics%20(MHD)%20Flow%20of%20Hybrid%20Ferrofluid%20Due%20to%20a%20Rotating%20Disk&rft.jtitle=Mathematics%20(Basel)&rft.au=Waini,%20Iskandar&rft.date=2022-05-01&rft.volume=10&rft.issue=10&rft.spage=1658&rft.pages=1658-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10101658&rft_dat=%3Cproquest_doaj_%3E2670218351%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670218351&rft_id=info:pmid/&rfr_iscdi=true |