Loading…

Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk

The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The t...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) 2022-05, Vol.10 (10), p.1658
Main Authors: Waini, Iskandar, Khashi’ie, Najiyah Safwa, Kasim, Abdul Rahman Mohd, Zainal, Nurul Amira, Hamzah, Khairum Bin, Md Arifin, Norihan, Pop, Ioan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163
cites cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163
container_end_page
container_issue 10
container_start_page 1658
container_title Mathematics (Basel)
container_volume 10
creator Waini, Iskandar
Khashi’ie, Najiyah Safwa
Kasim, Abdul Rahman Mohd
Zainal, Nurul Amira
Hamzah, Khairum Bin
Md Arifin, Norihan
Pop, Ioan
description The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.
doi_str_mv 10.3390/math10101658
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c</doaj_id><sourcerecordid>2670218351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqb35AwJeFFxNstkke5TWWqFFkPYcsvlot7abmuwi---NVqQzMPOYGd7M8AC4xughz0v0uFftBqPkrBBnYEAI4RlPjfMTfAlGMW5RshLngpYDsFw1sbXK9HCh1o1t_aY3wZu-UftaR3i7mE3u4HTnv6B3cNZXoTZwakPwbtclOOksbD1U8N23qq2bNZzU8eMKXDi1i3b0l4dgNX1ejmfZ_O3ldfw0zzQRRGSUcl0hpqktSs5yS41lrESC03QwQZVFTmDDK5SiSc2KMiNEeq_AOROY5UPweuQ1Xm3lIdR7FXrpVS1_Cz6spQptrXdWlpY7VDmLnRO0MlxQLlyJNEFUO1PoxHVz5DoE_9nZ2Mqt70KTzpeEcUSwyNPaIbg_TungYwzW_W_FSP7IIE9lyL8BnUp4Wg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670218351</pqid></control><display><type>article</type><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</creator><creatorcontrib>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</creatorcontrib><description>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math10101658</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary layer thickness ; Coefficient of friction ; Conductivity ; Differential equations ; Energy storage ; Ferrofluids ; Fluid flow ; Friction reduction ; Heat conductivity ; Heat transfer ; hybrid ferrofluid ; Investigations ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Magnetohydrodynamics ; Mathematical models ; Mathematics ; Nanoparticles ; Ordinary differential equations ; Parameters ; rotating disk ; Rotating disks ; Skin friction ; stability analysis ; Temperature distribution ; Temperature profiles ; unsteady flow</subject><ispartof>Mathematics (Basel), 2022-05, Vol.10 (10), p.1658</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</citedby><cites>FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</cites><orcidid>0000-0003-3045-302X ; 0000-0003-0332-7853 ; 0000-0002-9092-8288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2670218351/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2670218351?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Md Arifin, Norihan</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><title>Mathematics (Basel)</title><description>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</description><subject>Boundary layer thickness</subject><subject>Coefficient of friction</subject><subject>Conductivity</subject><subject>Differential equations</subject><subject>Energy storage</subject><subject>Ferrofluids</subject><subject>Fluid flow</subject><subject>Friction reduction</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>hybrid ferrofluid</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nanoparticles</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>rotating disk</subject><subject>Rotating disks</subject><subject>Skin friction</subject><subject>stability analysis</subject><subject>Temperature distribution</subject><subject>Temperature profiles</subject><subject>unsteady flow</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqb35AwJeFFxNstkke5TWWqFFkPYcsvlot7abmuwi---NVqQzMPOYGd7M8AC4xughz0v0uFftBqPkrBBnYEAI4RlPjfMTfAlGMW5RshLngpYDsFw1sbXK9HCh1o1t_aY3wZu-UftaR3i7mE3u4HTnv6B3cNZXoTZwakPwbtclOOksbD1U8N23qq2bNZzU8eMKXDi1i3b0l4dgNX1ejmfZ_O3ldfw0zzQRRGSUcl0hpqktSs5yS41lrESC03QwQZVFTmDDK5SiSc2KMiNEeq_AOROY5UPweuQ1Xm3lIdR7FXrpVS1_Cz6spQptrXdWlpY7VDmLnRO0MlxQLlyJNEFUO1PoxHVz5DoE_9nZ2Mqt70KTzpeEcUSwyNPaIbg_TungYwzW_W_FSP7IIE9lyL8BnUp4Wg</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Waini, Iskandar</creator><creator>Khashi’ie, Najiyah Safwa</creator><creator>Kasim, Abdul Rahman Mohd</creator><creator>Zainal, Nurul Amira</creator><creator>Hamzah, Khairum Bin</creator><creator>Md Arifin, Norihan</creator><creator>Pop, Ioan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid></search><sort><creationdate>20220501</creationdate><title>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</title><author>Waini, Iskandar ; Khashi’ie, Najiyah Safwa ; Kasim, Abdul Rahman Mohd ; Zainal, Nurul Amira ; Hamzah, Khairum Bin ; Md Arifin, Norihan ; Pop, Ioan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary layer thickness</topic><topic>Coefficient of friction</topic><topic>Conductivity</topic><topic>Differential equations</topic><topic>Energy storage</topic><topic>Ferrofluids</topic><topic>Fluid flow</topic><topic>Friction reduction</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>hybrid ferrofluid</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nanoparticles</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>rotating disk</topic><topic>Rotating disks</topic><topic>Skin friction</topic><topic>stability analysis</topic><topic>Temperature distribution</topic><topic>Temperature profiles</topic><topic>unsteady flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waini, Iskandar</creatorcontrib><creatorcontrib>Khashi’ie, Najiyah Safwa</creatorcontrib><creatorcontrib>Kasim, Abdul Rahman Mohd</creatorcontrib><creatorcontrib>Zainal, Nurul Amira</creatorcontrib><creatorcontrib>Hamzah, Khairum Bin</creatorcontrib><creatorcontrib>Md Arifin, Norihan</creatorcontrib><creatorcontrib>Pop, Ioan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waini, Iskandar</au><au>Khashi’ie, Najiyah Safwa</au><au>Kasim, Abdul Rahman Mohd</au><au>Zainal, Nurul Amira</au><au>Hamzah, Khairum Bin</au><au>Md Arifin, Norihan</au><au>Pop, Ioan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk</atitle><jtitle>Mathematics (Basel)</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><spage>1658</spage><pages>1658-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>The flow of fluids over the boundaries of a rotating disc has many practical uses, including boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating disk. The time-dependent mathematical model is transformed into a set of ordinary differential equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is utilised in order to solve the present model. Since the occurrence of more than one solution is presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—and temperature profile distributions are examined for the progressing parameters. The findings reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30% reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux parameter by almost 20%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math10101658</doi><orcidid>https://orcid.org/0000-0003-3045-302X</orcidid><orcidid>https://orcid.org/0000-0003-0332-7853</orcidid><orcidid>https://orcid.org/0000-0002-9092-8288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-7390
ispartof Mathematics (Basel), 2022-05, Vol.10 (10), p.1658
issn 2227-7390
2227-7390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9e7f0bfe1ff84bd78478f90c204cfd5c
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Boundary layer thickness
Coefficient of friction
Conductivity
Differential equations
Energy storage
Ferrofluids
Fluid flow
Friction reduction
Heat conductivity
Heat transfer
hybrid ferrofluid
Investigations
Magnetic fields
Magnetic flux
Magnetic properties
Magnetohydrodynamics
Mathematical models
Mathematics
Nanoparticles
Ordinary differential equations
Parameters
rotating disk
Rotating disks
Skin friction
stability analysis
Temperature distribution
Temperature profiles
unsteady flow
title Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A47%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsteady%20Magnetohydrodynamics%20(MHD)%20Flow%20of%20Hybrid%20Ferrofluid%20Due%20to%20a%20Rotating%20Disk&rft.jtitle=Mathematics%20(Basel)&rft.au=Waini,%20Iskandar&rft.date=2022-05-01&rft.volume=10&rft.issue=10&rft.spage=1658&rft.pages=1658-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math10101658&rft_dat=%3Cproquest_doaj_%3E2670218351%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2828-447cb06c4e59763e4de669087422220be0f81d7b081dd4deb46d8865851368163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2670218351&rft_id=info:pmid/&rfr_iscdi=true