Loading…
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological va...
Saved in:
Published in: | Ocean science 2016-04, Vol.12 (2), p.561-575 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3 |
container_end_page | 575 |
container_issue | 2 |
container_start_page | 561 |
container_title | Ocean science |
container_volume | 12 |
creator | Kostadinov, Tihomir S MilutinoviÄ, Svetlana Marinov, Irina Cabré, Anna |
description | Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ∼ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations |
doi_str_mv | 10.5194/os-12-561-2016 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482089740</galeid><doaj_id>oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c</doaj_id><sourcerecordid>A482089740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</originalsourceid><addsrcrecordid>eNp9kt9rFDEQxxdRsNa-9jngkw9bM9nsJnksh9qDgmD1OczmxzXn3mZNcsX615v2ilooJZBMhs9855swTXMK9KwHxT_E3AJr-wFaRmF40RyBrHcqFHv5X_y6eZPzllIOrIOjZrfCNMa5HTE7S5br2xKXCecfJc4kh9-OmAlzdpkkV1JwNxW6CUiicTgTE6eYiMsl7LBUJnpSrh1ZMJVgJncQsCHXynFfQpzfNq88TtmdPJzHzfdPH7-tLtrLL5_Xq_PL1vSDLHWHzhgmLCoLVnEYnRyElYOn1HhPrRdmAGoH5TwVQo6CqxoaTzuOdrTdcbM-6NqIW72k6i_d6ohB3ydi2ugHj1o5lAMTQo0ouTQUnfH9qITpvOeKmar17qC1pPhzXx-rt3Gf5mpfMw4cgHHRPUeBkLLvYQD4R22wtg6zjyWh2YVs9DmXjEolOK3U2RNUXdbtgomz86HmHxW8f1RQmeJ-lQ3uc9brq69PipsUc07O__0eoPpujnSslpmuc6Tv5qj7Ay9puok</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788551611</pqid></control><display><type>article</type><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Kostadinov, Tihomir S ; MilutinoviÄ, Svetlana ; Marinov, Irina ; Cabré, Anna</creator><creatorcontrib>Kostadinov, Tihomir S ; MilutinoviÄ, Svetlana ; Marinov, Irina ; Cabré, Anna</creatorcontrib><description>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ∼ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-12-561-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Algorithms ; Allometry ; Analysis ; Biogeochemical cycle ; Biogeochemical cycles ; Biogeochemistry ; Biomass ; Carbon ; Carbon content ; Carbon cycle ; Coefficients ; Color ; Diameters ; Ecosystems ; Empirical analysis ; Estimates ; Eutrophic environments ; Eutrophication ; Global climate ; Marine ecosystems ; Mathematical models ; Nannoplankton ; Ocean color ; Ocean colour ; Ocean models ; Oceans ; Parameter uncertainty ; Particle size ; Particle size distribution ; Particulate organic carbon ; Physiology ; Phytoplankton ; Picoplankton ; Plankton ; Regions ; Remote sensing ; Satellite data ; Size distribution ; Spatial distribution ; Spatial variability ; Spatial variations ; Statistical methods ; Uncertainty analysis</subject><ispartof>Ocean science, 2016-04, Vol.12 (2), p.561-575</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</citedby><cites>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</cites><orcidid>0000-0001-7628-2575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1788551611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1788551611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kostadinov, Tihomir S</creatorcontrib><creatorcontrib>MilutinoviÄ, Svetlana</creatorcontrib><creatorcontrib>Marinov, Irina</creatorcontrib><creatorcontrib>Cabré, Anna</creatorcontrib><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><title>Ocean science</title><description>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ∼ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</description><subject>Abundance</subject><subject>Algorithms</subject><subject>Allometry</subject><subject>Analysis</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Coefficients</subject><subject>Color</subject><subject>Diameters</subject><subject>Ecosystems</subject><subject>Empirical analysis</subject><subject>Estimates</subject><subject>Eutrophic environments</subject><subject>Eutrophication</subject><subject>Global climate</subject><subject>Marine ecosystems</subject><subject>Mathematical models</subject><subject>Nannoplankton</subject><subject>Ocean color</subject><subject>Ocean colour</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Parameter uncertainty</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Particulate organic carbon</subject><subject>Physiology</subject><subject>Phytoplankton</subject><subject>Picoplankton</subject><subject>Plankton</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Satellite data</subject><subject>Size distribution</subject><subject>Spatial distribution</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Statistical methods</subject><subject>Uncertainty analysis</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kt9rFDEQxxdRsNa-9jngkw9bM9nsJnksh9qDgmD1OczmxzXn3mZNcsX615v2ilooJZBMhs9855swTXMK9KwHxT_E3AJr-wFaRmF40RyBrHcqFHv5X_y6eZPzllIOrIOjZrfCNMa5HTE7S5br2xKXCecfJc4kh9-OmAlzdpkkV1JwNxW6CUiicTgTE6eYiMsl7LBUJnpSrh1ZMJVgJncQsCHXynFfQpzfNq88TtmdPJzHzfdPH7-tLtrLL5_Xq_PL1vSDLHWHzhgmLCoLVnEYnRyElYOn1HhPrRdmAGoH5TwVQo6CqxoaTzuOdrTdcbM-6NqIW72k6i_d6ohB3ydi2ugHj1o5lAMTQo0ouTQUnfH9qITpvOeKmar17qC1pPhzXx-rt3Gf5mpfMw4cgHHRPUeBkLLvYQD4R22wtg6zjyWh2YVs9DmXjEolOK3U2RNUXdbtgomz86HmHxW8f1RQmeJ-lQ3uc9brq69PipsUc07O__0eoPpujnSslpmuc6Tv5qj7Ay9puok</recordid><startdate>20160418</startdate><enddate>20160418</enddate><creator>Kostadinov, Tihomir S</creator><creator>MilutinoviÄ, Svetlana</creator><creator>Marinov, Irina</creator><creator>Cabré, Anna</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7628-2575</orcidid></search><sort><creationdate>20160418</creationdate><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><author>Kostadinov, Tihomir S ; MilutinoviÄ, Svetlana ; Marinov, Irina ; Cabré, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Algorithms</topic><topic>Allometry</topic><topic>Analysis</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Coefficients</topic><topic>Color</topic><topic>Diameters</topic><topic>Ecosystems</topic><topic>Empirical analysis</topic><topic>Estimates</topic><topic>Eutrophic environments</topic><topic>Eutrophication</topic><topic>Global climate</topic><topic>Marine ecosystems</topic><topic>Mathematical models</topic><topic>Nannoplankton</topic><topic>Ocean color</topic><topic>Ocean colour</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Parameter uncertainty</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Particulate organic carbon</topic><topic>Physiology</topic><topic>Phytoplankton</topic><topic>Picoplankton</topic><topic>Plankton</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Satellite data</topic><topic>Size distribution</topic><topic>Spatial distribution</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Statistical methods</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostadinov, Tihomir S</creatorcontrib><creatorcontrib>MilutinoviÄ, Svetlana</creatorcontrib><creatorcontrib>Marinov, Irina</creatorcontrib><creatorcontrib>Cabré, Anna</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostadinov, Tihomir S</au><au>MilutinoviÄ, Svetlana</au><au>Marinov, Irina</au><au>Cabré, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</atitle><jtitle>Ocean science</jtitle><date>2016-04-18</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>561</spage><epage>575</epage><pages>561-575</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield ∼ 0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-12-561-2016</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7628-2575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-0792 |
ispartof | Ocean science, 2016-04, Vol.12 (2), p.561-575 |
issn | 1812-0792 1812-0784 1812-0792 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c |
source | Publicly Available Content Database; IngentaConnect Journals |
subjects | Abundance Algorithms Allometry Analysis Biogeochemical cycle Biogeochemical cycles Biogeochemistry Biomass Carbon Carbon content Carbon cycle Coefficients Color Diameters Ecosystems Empirical analysis Estimates Eutrophic environments Eutrophication Global climate Marine ecosystems Mathematical models Nannoplankton Ocean color Ocean colour Ocean models Oceans Parameter uncertainty Particle size Particle size distribution Particulate organic carbon Physiology Phytoplankton Picoplankton Plankton Regions Remote sensing Satellite data Size distribution Spatial distribution Spatial variability Spatial variations Statistical methods Uncertainty analysis |
title | Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-based%20phytoplankton%20size%20classes%20retrieved%20via%20ocean%20color%20estimates%20of%20the%20particle%20size%20distribution&rft.jtitle=Ocean%20science&rft.au=Kostadinov,%20Tihomir%20S&rft.date=2016-04-18&rft.volume=12&rft.issue=2&rft.spage=561&rft.epage=575&rft.pages=561-575&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-12-561-2016&rft_dat=%3Cgale_doaj_%3EA482089740%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788551611&rft_id=info:pmid/&rft_galeid=A482089740&rfr_iscdi=true |