Loading…

Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution

Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological va...

Full description

Saved in:
Bibliographic Details
Published in:Ocean science 2016-04, Vol.12 (2), p.561-575
Main Authors: Kostadinov, Tihomir S, Milutinović, Svetlana, Marinov, Irina, Cabré, Anna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3
cites cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3
container_end_page 575
container_issue 2
container_start_page 561
container_title Ocean science
container_volume 12
creator Kostadinov, Tihomir S
Milutinović, Svetlana
Marinov, Irina
Cabré, Anna
description Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations
doi_str_mv 10.5194/os-12-561-2016
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A482089740</galeid><doaj_id>oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c</doaj_id><sourcerecordid>A482089740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</originalsourceid><addsrcrecordid>eNp9kt9rFDEQxxdRsNa-9jngkw9bM9nsJnksh9qDgmD1OczmxzXn3mZNcsX615v2ilooJZBMhs9855swTXMK9KwHxT_E3AJr-wFaRmF40RyBrHcqFHv5X_y6eZPzllIOrIOjZrfCNMa5HTE7S5br2xKXCecfJc4kh9-OmAlzdpkkV1JwNxW6CUiicTgTE6eYiMsl7LBUJnpSrh1ZMJVgJncQsCHXynFfQpzfNq88TtmdPJzHzfdPH7-tLtrLL5_Xq_PL1vSDLHWHzhgmLCoLVnEYnRyElYOn1HhPrRdmAGoH5TwVQo6CqxoaTzuOdrTdcbM-6NqIW72k6i_d6ohB3ydi2ugHj1o5lAMTQo0ouTQUnfH9qITpvOeKmar17qC1pPhzXx-rt3Gf5mpfMw4cgHHRPUeBkLLvYQD4R22wtg6zjyWh2YVs9DmXjEolOK3U2RNUXdbtgomz86HmHxW8f1RQmeJ-lQ3uc9brq69PipsUc07O__0eoPpujnSslpmuc6Tv5qj7Ay9puok</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1788551611</pqid></control><display><type>article</type><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><creator>Kostadinov, Tihomir S ; Milutinović, Svetlana ; Marinov, Irina ; Cabré, Anna</creator><creatorcontrib>Kostadinov, Tihomir S ; Milutinović, Svetlana ; Marinov, Irina ; Cabré, Anna</creatorcontrib><description>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</description><identifier>ISSN: 1812-0792</identifier><identifier>ISSN: 1812-0784</identifier><identifier>EISSN: 1812-0792</identifier><identifier>DOI: 10.5194/os-12-561-2016</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Abundance ; Algorithms ; Allometry ; Analysis ; Biogeochemical cycle ; Biogeochemical cycles ; Biogeochemistry ; Biomass ; Carbon ; Carbon content ; Carbon cycle ; Coefficients ; Color ; Diameters ; Ecosystems ; Empirical analysis ; Estimates ; Eutrophic environments ; Eutrophication ; Global climate ; Marine ecosystems ; Mathematical models ; Nannoplankton ; Ocean color ; Ocean colour ; Ocean models ; Oceans ; Parameter uncertainty ; Particle size ; Particle size distribution ; Particulate organic carbon ; Physiology ; Phytoplankton ; Picoplankton ; Plankton ; Regions ; Remote sensing ; Satellite data ; Size distribution ; Spatial distribution ; Spatial variability ; Spatial variations ; Statistical methods ; Uncertainty analysis</subject><ispartof>Ocean science, 2016-04, Vol.12 (2), p.561-575</ispartof><rights>COPYRIGHT 2016 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2016</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</citedby><cites>FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</cites><orcidid>0000-0001-7628-2575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1788551611/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1788551611?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kostadinov, Tihomir S</creatorcontrib><creatorcontrib>Milutinović, Svetlana</creatorcontrib><creatorcontrib>Marinov, Irina</creatorcontrib><creatorcontrib>Cabré, Anna</creatorcontrib><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><title>Ocean science</title><description>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</description><subject>Abundance</subject><subject>Algorithms</subject><subject>Allometry</subject><subject>Analysis</subject><subject>Biogeochemical cycle</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Coefficients</subject><subject>Color</subject><subject>Diameters</subject><subject>Ecosystems</subject><subject>Empirical analysis</subject><subject>Estimates</subject><subject>Eutrophic environments</subject><subject>Eutrophication</subject><subject>Global climate</subject><subject>Marine ecosystems</subject><subject>Mathematical models</subject><subject>Nannoplankton</subject><subject>Ocean color</subject><subject>Ocean colour</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Parameter uncertainty</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Particulate organic carbon</subject><subject>Physiology</subject><subject>Phytoplankton</subject><subject>Picoplankton</subject><subject>Plankton</subject><subject>Regions</subject><subject>Remote sensing</subject><subject>Satellite data</subject><subject>Size distribution</subject><subject>Spatial distribution</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Statistical methods</subject><subject>Uncertainty analysis</subject><issn>1812-0792</issn><issn>1812-0784</issn><issn>1812-0792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kt9rFDEQxxdRsNa-9jngkw9bM9nsJnksh9qDgmD1OczmxzXn3mZNcsX615v2ilooJZBMhs9855swTXMK9KwHxT_E3AJr-wFaRmF40RyBrHcqFHv5X_y6eZPzllIOrIOjZrfCNMa5HTE7S5br2xKXCecfJc4kh9-OmAlzdpkkV1JwNxW6CUiicTgTE6eYiMsl7LBUJnpSrh1ZMJVgJncQsCHXynFfQpzfNq88TtmdPJzHzfdPH7-tLtrLL5_Xq_PL1vSDLHWHzhgmLCoLVnEYnRyElYOn1HhPrRdmAGoH5TwVQo6CqxoaTzuOdrTdcbM-6NqIW72k6i_d6ohB3ydi2ugHj1o5lAMTQo0ouTQUnfH9qITpvOeKmar17qC1pPhzXx-rt3Gf5mpfMw4cgHHRPUeBkLLvYQD4R22wtg6zjyWh2YVs9DmXjEolOK3U2RNUXdbtgomz86HmHxW8f1RQmeJ-lQ3uc9brq69PipsUc07O__0eoPpujnSslpmuc6Tv5qj7Ay9puok</recordid><startdate>20160418</startdate><enddate>20160418</enddate><creator>Kostadinov, Tihomir S</creator><creator>Milutinović, Svetlana</creator><creator>Marinov, Irina</creator><creator>Cabré, Anna</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7628-2575</orcidid></search><sort><creationdate>20160418</creationdate><title>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</title><author>Kostadinov, Tihomir S ; Milutinović, Svetlana ; Marinov, Irina ; Cabré, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Algorithms</topic><topic>Allometry</topic><topic>Analysis</topic><topic>Biogeochemical cycle</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Coefficients</topic><topic>Color</topic><topic>Diameters</topic><topic>Ecosystems</topic><topic>Empirical analysis</topic><topic>Estimates</topic><topic>Eutrophic environments</topic><topic>Eutrophication</topic><topic>Global climate</topic><topic>Marine ecosystems</topic><topic>Mathematical models</topic><topic>Nannoplankton</topic><topic>Ocean color</topic><topic>Ocean colour</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Parameter uncertainty</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Particulate organic carbon</topic><topic>Physiology</topic><topic>Phytoplankton</topic><topic>Picoplankton</topic><topic>Plankton</topic><topic>Regions</topic><topic>Remote sensing</topic><topic>Satellite data</topic><topic>Size distribution</topic><topic>Spatial distribution</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Statistical methods</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostadinov, Tihomir S</creatorcontrib><creatorcontrib>Milutinović, Svetlana</creatorcontrib><creatorcontrib>Marinov, Irina</creatorcontrib><creatorcontrib>Cabré, Anna</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Ocean science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostadinov, Tihomir S</au><au>Milutinović, Svetlana</au><au>Marinov, Irina</au><au>Cabré, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution</atitle><jtitle>Ocean science</jtitle><date>2016-04-18</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>561</spage><epage>575</epage><pages>561-575</pages><issn>1812-0792</issn><issn>1812-0784</issn><eissn>1812-0792</eissn><abstract>Owing to their important roles in biogeochemical cycles, phytoplankton functional types (PFTs) have been the aim of an increasing number of ocean color algorithms. Yet, none of the existing methods are based on phytoplankton carbon (C) biomass, which is a fundamental biogeochemical and ecological variable and the “unit of accounting” in Earth system models. We present a novel bio-optical algorithm to retrieve size-partitioned phytoplankton carbon from ocean color satellite data. The algorithm is based on existing methods to estimate particle volume from a power-law particle size distribution (PSD). Volume is converted to carbon concentrations using a compilation of allometric relationships. We quantify absolute and fractional biomass in three PFTs based on size – picophytoplankton (0.5–2 µm in diameter), nanophytoplankton (2–20 µm) and microphytoplankton (20–50 µm). The mean spatial distributions of total phytoplankton C biomass and individual PFTs, derived from global SeaWiFS monthly ocean color data, are consistent with current understanding of oceanic ecosystems, i.e., oligotrophic regions are characterized by low biomass and dominance of picoplankton, whereas eutrophic regions have high biomass to which nanoplankton and microplankton contribute relatively larger fractions. Global climatological, spatially integrated phytoplankton carbon biomass standing stock estimates using our PSD-based approach yield  ∼  0.25 Gt of C, consistent with analogous estimates from two other ocean color algorithms and several state-of-the-art Earth system models. Satisfactory in situ closure observed between PSD and POC measurements lends support to the theoretical basis of the PSD-based algorithm. Uncertainty budget analyses indicate that absolute carbon concentration uncertainties are driven by the PSD parameter No which determines particle number concentration to first order, while uncertainties in PFTs' fractional contributions to total C biomass are mostly due to the allometric coefficients. The C algorithm presented here, which is not empirically constrained a priori, partitions biomass in size classes and introduces improvement over the assumptions of the other approaches. However, the range of phytoplankton C biomass spatial variability globally is larger than estimated by any other models considered here, which suggests an empirical correction to the No parameter is needed, based on PSD validation statistics. These corrected absolute carbon biomass concentrations validate well against in situ POC observations.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/os-12-561-2016</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7628-2575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-0792
ispartof Ocean science, 2016-04, Vol.12 (2), p.561-575
issn 1812-0792
1812-0784
1812-0792
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9ea862779ba848c0aecf5b97c3ff492c
source Publicly Available Content Database; IngentaConnect Journals
subjects Abundance
Algorithms
Allometry
Analysis
Biogeochemical cycle
Biogeochemical cycles
Biogeochemistry
Biomass
Carbon
Carbon content
Carbon cycle
Coefficients
Color
Diameters
Ecosystems
Empirical analysis
Estimates
Eutrophic environments
Eutrophication
Global climate
Marine ecosystems
Mathematical models
Nannoplankton
Ocean color
Ocean colour
Ocean models
Oceans
Parameter uncertainty
Particle size
Particle size distribution
Particulate organic carbon
Physiology
Phytoplankton
Picoplankton
Plankton
Regions
Remote sensing
Satellite data
Size distribution
Spatial distribution
Spatial variability
Spatial variations
Statistical methods
Uncertainty analysis
title Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-based%20phytoplankton%20size%20classes%20retrieved%20via%20ocean%20color%20estimates%20of%20the%20particle%20size%20distribution&rft.jtitle=Ocean%20science&rft.au=Kostadinov,%20Tihomir%20S&rft.date=2016-04-18&rft.volume=12&rft.issue=2&rft.spage=561&rft.epage=575&rft.pages=561-575&rft.issn=1812-0792&rft.eissn=1812-0792&rft_id=info:doi/10.5194/os-12-561-2016&rft_dat=%3Cgale_doaj_%3EA482089740%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c568t-c513cc27da9d1d941be867d86f00cff0df7c610d69ef0778b7499efcf034adbd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1788551611&rft_id=info:pmid/&rft_galeid=A482089740&rfr_iscdi=true