Loading…

Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase

Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on es...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian Journal of Pharmaceutical Sciences 2009-09, Vol.45 (3), p.429-435
Main Authors: Pincinato, Eder de Carvalho, Moriel, Patricia, Abdalla, Dulcinéia Saes Parra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cholesterol oxides are atherogenic and can affect the activity of diverse important enzymes for the lipidic metabolism. The effect of 7β-hydroxycholesterol, 7-ketocholesterol, 25-hydroxycholesterol, cholestan-3β,5α,6β-triol,5,6β-epoxycholesterol, 5,6α-epoxycholesterol and 7α-hydroxycholesterol on esterification of cholesterol by lecithin:cholesterol acyl transferase (LCAT, EC 2.3.1.43) and the transfer of esters of cholesterol oxides from high density lipoprotein (HDL) to low density lipoproteins (LDL) and very low density lipoproteins (VLDL) by cholesteryl ester transfer protein (CETP) was investigated. HDL enriched with increasing concentrations of cholesterol oxides was incubated with fresh plasma as source of LCAT. Cholesterol and cholesterol oxides esterification was followed by measuring the consumption of respective free sterol and oxysterols. Measurements of cholesterol and cholesterol oxides were done by gas-chromatography. 14C-cholesterol oxides were incorporated into HDL2 and HDL3 subfractions and then incubated with fresh plasma containing LCAT and CETP. The transfer of cholesterol oxide esters was followed by measuring the 14C-cholesterol oxide-derived esters transferred to LDL and VLDL. All the cholesterol oxides studied were esterified by LCAT after incorporation into HDL particles, competing with cholesterol by LCAT. Cholesterol esterification by LCAT was inversely related to the cholesterol oxide concentration. The esterification of 14C-cholesterol oxides was higher in HDL3 and the transfer of the derived esters was greater from HDL2 to LDL and VLDL. The results suggest that cholesterol esterification by LCAT is inhibited in cholesterol oxide-enriched HDL particles. Moreover, the cholesterol oxides-derived esters are efficiently transferred to LDL and VLDL. Therefore, we suggest that cholesterol oxides may exert part of their atherogenic effect by inhibiting cholesterol esterification on the HDL surface and thereby disturbing reverse cholesterol transport. Os óxidos de colesterol são aterogênicos e podem afetar a atividade de diversas enzimas importantes para o metabolismo lipídico. Este estudo investigou o efeito dos óxidos 7β-hidroxicolesterol, 7-cetocolesterol, 25-hidroxicolesterol, colestan-3β,5α,6β-triol, 5,6β-epoxicolesterol, 5,6α-epoxicolesterol e 7α-hidroxicolesterol na esterificação do colesterol por ação da lecitina colesterol aciltransferase (LCAT, EC 2.3.1.43) e a posterior transferência dos óxidos esterificados da lipoproteína
ISSN:1984-8250
2175-9790
1984-8250
2175-9790
DOI:10.1590/S1984-82502009000300007