Loading…
Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle
In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorith...
Saved in:
Published in: | Journal of robotics 2020, Vol.2020 (2020), p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3 |
container_end_page | 8 |
container_issue | 2020 |
container_start_page | 1 |
container_title | Journal of robotics |
container_volume | 2020 |
creator | Wang, Bohang Wang, Daobo |
description | In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller. |
doi_str_mv | 10.1155/2020/2368273 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9</doaj_id><sourcerecordid>2350016893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</originalsourceid><addsrcrecordid>eNqFkc9LHDEUxwdRUKy3nkugR92aTDLJ5LgsWgWhUNRryI-X3Syzic1kkP3vm-0seuy7vJdvPnzzyLdpvhL8g5Cuu21xi29byvtW0JPmgvBeLCQn8vRjxvi8uRrHLa5FZSuJuGjU72SmsaCHvcnBoVWKJacBLYd1yqFsdsinjJ6nGOIalQ3UixLK5ADp6NCyHA_Jo5e40zFCFSEHPaBX2AQ7wJfmzOthhKtjv2xe7u-eVw-Lp18_H1fLp4VlPSsLLoywTHMKLRgJzkhDPMfGcNqB4xYTK4WUzDIQRnondeeIxaYVQnMBnl42j7OvS3qr3nLY6bxXSQf1T0h5rXQuh42UBG162hFgsmfAfF-7NUC0I45gL6vX99nrLac_E4xFbdOUY11ftbTDuH6npJW6mSmb0zhm8B-vEqwOiahDIuqYSMWvZ3wTotPv4X_0t5mGyoDXnzSRlWP0L_8_lHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350016893</pqid></control><display><type>article</type><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wang, Bohang ; Wang, Daobo</creator><contributor>Fortuna, L. ; L Fortuna</contributor><creatorcontrib>Wang, Bohang ; Wang, Daobo ; Fortuna, L. ; L Fortuna</creatorcontrib><description>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2020/2368273</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Degrees of freedom ; H-infinity control ; Hybrid control ; Mathematical models ; Parameters ; Robust control ; Robustness (mathematics) ; Tracking control ; Tuning ; Unmanned aerial vehicles</subject><ispartof>Journal of robotics, 2020, Vol.2020 (2020), p.1-8</ispartof><rights>Copyright © 2020 Bohang Wang and Daobo Wang.</rights><rights>Copyright © 2020 Bohang Wang and Daobo Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</cites><orcidid>0000-0001-5174-8260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2350016893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2350016893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Fortuna, L.</contributor><contributor>L Fortuna</contributor><creatorcontrib>Wang, Bohang</creatorcontrib><creatorcontrib>Wang, Daobo</creatorcontrib><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><title>Journal of robotics</title><description>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>H-infinity control</subject><subject>Hybrid control</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Robust control</subject><subject>Robustness (mathematics)</subject><subject>Tracking control</subject><subject>Tuning</subject><subject>Unmanned aerial vehicles</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9LHDEUxwdRUKy3nkugR92aTDLJ5LgsWgWhUNRryI-X3Syzic1kkP3vm-0seuy7vJdvPnzzyLdpvhL8g5Cuu21xi29byvtW0JPmgvBeLCQn8vRjxvi8uRrHLa5FZSuJuGjU72SmsaCHvcnBoVWKJacBLYd1yqFsdsinjJ6nGOIalQ3UixLK5ADp6NCyHA_Jo5e40zFCFSEHPaBX2AQ7wJfmzOthhKtjv2xe7u-eVw-Lp18_H1fLp4VlPSsLLoywTHMKLRgJzkhDPMfGcNqB4xYTK4WUzDIQRnondeeIxaYVQnMBnl42j7OvS3qr3nLY6bxXSQf1T0h5rXQuh42UBG162hFgsmfAfF-7NUC0I45gL6vX99nrLac_E4xFbdOUY11ftbTDuH6npJW6mSmb0zhm8B-vEqwOiahDIuqYSMWvZ3wTotPv4X_0t5mGyoDXnzSRlWP0L_8_lHg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Bohang</creator><creator>Wang, Daobo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5174-8260</orcidid></search><sort><creationdate>2020</creationdate><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><author>Wang, Bohang ; Wang, Daobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>H-infinity control</topic><topic>Hybrid control</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Robust control</topic><topic>Robustness (mathematics)</topic><topic>Tracking control</topic><topic>Tuning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bohang</creatorcontrib><creatorcontrib>Wang, Daobo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bohang</au><au>Wang, Daobo</au><au>Fortuna, L.</au><au>L Fortuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</atitle><jtitle>Journal of robotics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/2368273</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5174-8260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9600 |
ispartof | Journal of robotics, 2020, Vol.2020 (2020), p.1-8 |
issn | 1687-9600 1687-9619 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Algorithms Computer simulation Control algorithms Control systems design Control theory Controllers Degrees of freedom H-infinity control Hybrid control Mathematical models Parameters Robust control Robustness (mathematics) Tracking control Tuning Unmanned aerial vehicles |
title | Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Hybrid%20Control%20Algorithm%20for%20Tuning%20the%20Altitude%20and%20Attitude%20of%20Unmanned%20Aerial%20Vehicle&rft.jtitle=Journal%20of%20robotics&rft.au=Wang,%20Bohang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2020/2368273&rft_dat=%3Cproquest_doaj_%3E2350016893%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350016893&rft_id=info:pmid/&rfr_iscdi=true |