Loading…

Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle

In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorith...

Full description

Saved in:
Bibliographic Details
Published in:Journal of robotics 2020, Vol.2020 (2020), p.1-8
Main Authors: Wang, Bohang, Wang, Daobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3
container_end_page 8
container_issue 2020
container_start_page 1
container_title Journal of robotics
container_volume 2020
creator Wang, Bohang
Wang, Daobo
description In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.
doi_str_mv 10.1155/2020/2368273
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9</doaj_id><sourcerecordid>2350016893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</originalsourceid><addsrcrecordid>eNqFkc9LHDEUxwdRUKy3nkugR92aTDLJ5LgsWgWhUNRryI-X3Syzic1kkP3vm-0seuy7vJdvPnzzyLdpvhL8g5Cuu21xi29byvtW0JPmgvBeLCQn8vRjxvi8uRrHLa5FZSuJuGjU72SmsaCHvcnBoVWKJacBLYd1yqFsdsinjJ6nGOIalQ3UixLK5ADp6NCyHA_Jo5e40zFCFSEHPaBX2AQ7wJfmzOthhKtjv2xe7u-eVw-Lp18_H1fLp4VlPSsLLoywTHMKLRgJzkhDPMfGcNqB4xYTK4WUzDIQRnondeeIxaYVQnMBnl42j7OvS3qr3nLY6bxXSQf1T0h5rXQuh42UBG162hFgsmfAfF-7NUC0I45gL6vX99nrLac_E4xFbdOUY11ftbTDuH6npJW6mSmb0zhm8B-vEqwOiahDIuqYSMWvZ3wTotPv4X_0t5mGyoDXnzSRlWP0L_8_lHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350016893</pqid></control><display><type>article</type><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Wang, Bohang ; Wang, Daobo</creator><contributor>Fortuna, L. ; L Fortuna</contributor><creatorcontrib>Wang, Bohang ; Wang, Daobo ; Fortuna, L. ; L Fortuna</creatorcontrib><description>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</description><identifier>ISSN: 1687-9600</identifier><identifier>EISSN: 1687-9619</identifier><identifier>DOI: 10.1155/2020/2368273</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Control algorithms ; Control systems design ; Control theory ; Controllers ; Degrees of freedom ; H-infinity control ; Hybrid control ; Mathematical models ; Parameters ; Robust control ; Robustness (mathematics) ; Tracking control ; Tuning ; Unmanned aerial vehicles</subject><ispartof>Journal of robotics, 2020, Vol.2020 (2020), p.1-8</ispartof><rights>Copyright © 2020 Bohang Wang and Daobo Wang.</rights><rights>Copyright © 2020 Bohang Wang and Daobo Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</cites><orcidid>0000-0001-5174-8260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2350016893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2350016893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,25734,27904,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Fortuna, L.</contributor><contributor>L Fortuna</contributor><creatorcontrib>Wang, Bohang</creatorcontrib><creatorcontrib>Wang, Daobo</creatorcontrib><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><title>Journal of robotics</title><description>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Degrees of freedom</subject><subject>H-infinity control</subject><subject>Hybrid control</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Robust control</subject><subject>Robustness (mathematics)</subject><subject>Tracking control</subject><subject>Tuning</subject><subject>Unmanned aerial vehicles</subject><issn>1687-9600</issn><issn>1687-9619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc9LHDEUxwdRUKy3nkugR92aTDLJ5LgsWgWhUNRryI-X3Syzic1kkP3vm-0seuy7vJdvPnzzyLdpvhL8g5Cuu21xi29byvtW0JPmgvBeLCQn8vRjxvi8uRrHLa5FZSuJuGjU72SmsaCHvcnBoVWKJacBLYd1yqFsdsinjJ6nGOIalQ3UixLK5ADp6NCyHA_Jo5e40zFCFSEHPaBX2AQ7wJfmzOthhKtjv2xe7u-eVw-Lp18_H1fLp4VlPSsLLoywTHMKLRgJzkhDPMfGcNqB4xYTK4WUzDIQRnondeeIxaYVQnMBnl42j7OvS3qr3nLY6bxXSQf1T0h5rXQuh42UBG162hFgsmfAfF-7NUC0I45gL6vX99nrLac_E4xFbdOUY11ftbTDuH6npJW6mSmb0zhm8B-vEqwOiahDIuqYSMWvZ3wTotPv4X_0t5mGyoDXnzSRlWP0L_8_lHg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Bohang</creator><creator>Wang, Daobo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5174-8260</orcidid></search><sort><creationdate>2020</creationdate><title>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</title><author>Wang, Bohang ; Wang, Daobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Degrees of freedom</topic><topic>H-infinity control</topic><topic>Hybrid control</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Robust control</topic><topic>Robustness (mathematics)</topic><topic>Tracking control</topic><topic>Tuning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bohang</creatorcontrib><creatorcontrib>Wang, Daobo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bohang</au><au>Wang, Daobo</au><au>Fortuna, L.</au><au>L Fortuna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle</atitle><jtitle>Journal of robotics</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9600</issn><eissn>1687-9619</eissn><abstract>In this article, a new and novel robust hybrid control algorithm is designed for tuning the parameters of unmanned aerial vehicle (UAV). The quadrotor type UAV mathematical model is taken to observe the effectiveness of our designed robust hybrid control algorithm. The robust hybrid control algorithm consists of H ∞ based regulation, pole-placement and tracking (RST) controller along with mixed sensitivity function is applied to control the complete model of UAV. The selected rotor craft is under-actuated, nonlinear and multivariable behavior in nature along with six degrees of freedom (DOF). Due to all these aforementioned issues its stabilization is quite difficult as compared to fully actuated systems. For the tuning of nonlinear parameters of the UAV, we designed, robust hybrid control algorithm is used. Moreover, the performance of the designed controller is compared with robust controller. The validity and effectiveness of the designed controllers are simulated in MATLAB and Simulink, in which the designed controller shows better steady state behavior, robustness and converges quickly in specific amount of time as compared to robust controller.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/2368273</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5174-8260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9600
ispartof Journal of robotics, 2020, Vol.2020 (2020), p.1-8
issn 1687-9600
1687-9619
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9eab8351e4984e4f8498cbe1ad1d10f9
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Algorithms
Computer simulation
Control algorithms
Control systems design
Control theory
Controllers
Degrees of freedom
H-infinity control
Hybrid control
Mathematical models
Parameters
Robust control
Robustness (mathematics)
Tracking control
Tuning
Unmanned aerial vehicles
title Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Hybrid%20Control%20Algorithm%20for%20Tuning%20the%20Altitude%20and%20Attitude%20of%20Unmanned%20Aerial%20Vehicle&rft.jtitle=Journal%20of%20robotics&rft.au=Wang,%20Bohang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9600&rft.eissn=1687-9619&rft_id=info:doi/10.1155/2020/2368273&rft_dat=%3Cproquest_doaj_%3E2350016893%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c484t-67b7c4a63e2eb9edb9b1f60bb635ed6c01c97994c4e7b9fd9a5d1c0b277a67ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350016893&rft_id=info:pmid/&rfr_iscdi=true