Loading…

DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX

Drought is one of the most common natural phenomena. Many indices using multiple data types have been created, and their success at recognizing periods of extreme wetness and dryness has been well documented. The merit of the method is the utilization of terrestrial water storage (TWS) variations fr...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2019-10, Vol.XLII-4/W18, p.659-663
Main Authors: Kordpour, I., Farzaneh, S., Shahhoseini, R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3489-87cd53d8c5f2fbb120a23e068ea90b866ed0485de4a627ec3a61348f56b701703
cites
container_end_page 663
container_issue
container_start_page 659
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XLII-4/W18
creator Kordpour, I.
Farzaneh, S.
Shahhoseini, R.
description Drought is one of the most common natural phenomena. Many indices using multiple data types have been created, and their success at recognizing periods of extreme wetness and dryness has been well documented. The merit of the method is the utilization of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) quantification of drought intensity. Alongside with these observations, we add precipitation data to equations. In this study, we analyze Merged-dataset Drought index (MDI) using GRACE-derived TWSA and precipitation in Iran, where most of the area is desert and mountain in the middle and South of the country. Our sample period is from January 2003 to December 2014. MDI shows a strong correlation with existing drought indices, especially with the Palmer Drought Severity Index (PDSI). Based on the obtained results, MDI indicates a moderate Drought event in 2008 and 2012–2015, which is compatible with the recorded result of PDSI. The longest drought took 22 months (from January 2008 to October 2009). Interestingly, the coefficient of correlation between MDI and PDSI is 0.67.
doi_str_mv 10.5194/isprs-archives-XLII-4-W18-659-2019
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eaf166c0822476599863f0ab471a233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eaf166c0822476599863f0ab471a233</doaj_id><sourcerecordid>2306832931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3489-87cd53d8c5f2fbb120a23e068ea90b866ed0485de4a627ec3a61348f56b701703</originalsourceid><addsrcrecordid>eNpNkN1PwjAUxRujiQT5H5b4ZlLs17r2EWHAEj4SNiJvTdd1OoIOWzDxv7eAGp_uzc2555z8AHjAqB9jyR4bv3ceamdem0_r4WaWZZDBZywgjyUkCMsr0CFBCSWi7Prffgt63m8RQphxHqO4A_qj1XI9mRbRIM_TPJ-niyJajqNsNVhE6zxbTKJimkbzURZli1G6uQM3td552_uZXbAep8VwCmfLSTYczKChTEgoElPFtBImrkldlpggTahFXFgtUSk4txViIq4s05wk1lDNcXisY14mCCeIdkF28a1avVV717xp96Va3ajzoXUvSrtDY3ZWSatrzLlBghCWBAJScFojXbIEh1QavO4vXnvXfhytP6hte3Tvob4iNHSiRFIcVE8XlXGt987Wf6kYqRN2dcaufrGrE3bFVMCuQqg6Yaff7gR1Lg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306832931</pqid></control><display><type>article</type><title>DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX</title><source>Publicly Available Content (ProQuest)</source><source>EZB Electronic Journals Library</source><creator>Kordpour, I. ; Farzaneh, S. ; Shahhoseini, R.</creator><creatorcontrib>Kordpour, I. ; Farzaneh, S. ; Shahhoseini, R.</creatorcontrib><description>Drought is one of the most common natural phenomena. Many indices using multiple data types have been created, and their success at recognizing periods of extreme wetness and dryness has been well documented. The merit of the method is the utilization of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) quantification of drought intensity. Alongside with these observations, we add precipitation data to equations. In this study, we analyze Merged-dataset Drought index (MDI) using GRACE-derived TWSA and precipitation in Iran, where most of the area is desert and mountain in the middle and South of the country. Our sample period is from January 2003 to December 2014. MDI shows a strong correlation with existing drought indices, especially with the Palmer Drought Severity Index (PDSI). Based on the obtained results, MDI indicates a moderate Drought event in 2008 and 2012–2015, which is compatible with the recorded result of PDSI. The longest drought took 22 months (from January 2008 to October 2009). Interestingly, the coefficient of correlation between MDI and PDSI is 0.67.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLII-4-W18-659-2019</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Correlation ; Drought ; Drought index ; GRACE (experiment) ; Gravity ; Hydrologic data ; Mountains ; Natural phenomena ; Precipitation ; Water storage</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2019-10, Vol.XLII-4/W18, p.659-663</ispartof><rights>2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3489-87cd53d8c5f2fbb120a23e068ea90b866ed0485de4a627ec3a61348f56b701703</citedby><orcidid>0000-0002-0534-0632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2306832931?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Kordpour, I.</creatorcontrib><creatorcontrib>Farzaneh, S.</creatorcontrib><creatorcontrib>Shahhoseini, R.</creatorcontrib><title>DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>Drought is one of the most common natural phenomena. Many indices using multiple data types have been created, and their success at recognizing periods of extreme wetness and dryness has been well documented. The merit of the method is the utilization of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) quantification of drought intensity. Alongside with these observations, we add precipitation data to equations. In this study, we analyze Merged-dataset Drought index (MDI) using GRACE-derived TWSA and precipitation in Iran, where most of the area is desert and mountain in the middle and South of the country. Our sample period is from January 2003 to December 2014. MDI shows a strong correlation with existing drought indices, especially with the Palmer Drought Severity Index (PDSI). Based on the obtained results, MDI indicates a moderate Drought event in 2008 and 2012–2015, which is compatible with the recorded result of PDSI. The longest drought took 22 months (from January 2008 to October 2009). Interestingly, the coefficient of correlation between MDI and PDSI is 0.67.</description><subject>Correlation</subject><subject>Drought</subject><subject>Drought index</subject><subject>GRACE (experiment)</subject><subject>Gravity</subject><subject>Hydrologic data</subject><subject>Mountains</subject><subject>Natural phenomena</subject><subject>Precipitation</subject><subject>Water storage</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkN1PwjAUxRujiQT5H5b4ZlLs17r2EWHAEj4SNiJvTdd1OoIOWzDxv7eAGp_uzc2555z8AHjAqB9jyR4bv3ceamdem0_r4WaWZZDBZywgjyUkCMsr0CFBCSWi7Prffgt63m8RQphxHqO4A_qj1XI9mRbRIM_TPJ-niyJajqNsNVhE6zxbTKJimkbzURZli1G6uQM3td552_uZXbAep8VwCmfLSTYczKChTEgoElPFtBImrkldlpggTahFXFgtUSk4txViIq4s05wk1lDNcXisY14mCCeIdkF28a1avVV717xp96Va3ajzoXUvSrtDY3ZWSatrzLlBghCWBAJScFojXbIEh1QavO4vXnvXfhytP6hte3Tvob4iNHSiRFIcVE8XlXGt987Wf6kYqRN2dcaufrGrE3bFVMCuQqg6Yaff7gR1Lg</recordid><startdate>20191018</startdate><enddate>20191018</enddate><creator>Kordpour, I.</creator><creator>Farzaneh, S.</creator><creator>Shahhoseini, R.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0534-0632</orcidid></search><sort><creationdate>20191018</creationdate><title>DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX</title><author>Kordpour, I. ; Farzaneh, S. ; Shahhoseini, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3489-87cd53d8c5f2fbb120a23e068ea90b866ed0485de4a627ec3a61348f56b701703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Correlation</topic><topic>Drought</topic><topic>Drought index</topic><topic>GRACE (experiment)</topic><topic>Gravity</topic><topic>Hydrologic data</topic><topic>Mountains</topic><topic>Natural phenomena</topic><topic>Precipitation</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kordpour, I.</creatorcontrib><creatorcontrib>Farzaneh, S.</creatorcontrib><creatorcontrib>Shahhoseini, R.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kordpour, I.</au><au>Farzaneh, S.</au><au>Shahhoseini, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2019-10-18</date><risdate>2019</risdate><volume>XLII-4/W18</volume><spage>659</spage><epage>663</epage><pages>659-663</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>Drought is one of the most common natural phenomena. Many indices using multiple data types have been created, and their success at recognizing periods of extreme wetness and dryness has been well documented. The merit of the method is the utilization of terrestrial water storage (TWS) variations from Gravity Recovery and Climate Experiment (GRACE) quantification of drought intensity. Alongside with these observations, we add precipitation data to equations. In this study, we analyze Merged-dataset Drought index (MDI) using GRACE-derived TWSA and precipitation in Iran, where most of the area is desert and mountain in the middle and South of the country. Our sample period is from January 2003 to December 2014. MDI shows a strong correlation with existing drought indices, especially with the Palmer Drought Severity Index (PDSI). Based on the obtained results, MDI indicates a moderate Drought event in 2008 and 2012–2015, which is compatible with the recorded result of PDSI. The longest drought took 22 months (from January 2008 to October 2009). Interestingly, the coefficient of correlation between MDI and PDSI is 0.67.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLII-4-W18-659-2019</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0534-0632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2019-10, Vol.XLII-4/W18, p.659-663
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9eaf166c0822476599863f0ab471a233
source Publicly Available Content (ProQuest); EZB Electronic Journals Library
subjects Correlation
Drought
Drought index
GRACE (experiment)
Gravity
Hydrologic data
Mountains
Natural phenomena
Precipitation
Water storage
title DROUGHT ASSESSMENT OF IRAN USING THE MDI INDEX
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DROUGHT%20ASSESSMENT%20OF%20IRAN%20USING%20THE%20MDI%20INDEX&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Kordpour,%20I.&rft.date=2019-10-18&rft.volume=XLII-4/W18&rft.spage=659&rft.epage=663&rft.pages=659-663&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLII-4-W18-659-2019&rft_dat=%3Cproquest_doaj_%3E2306832931%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3489-87cd53d8c5f2fbb120a23e068ea90b866ed0485de4a627ec3a61348f56b701703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306832931&rft_id=info:pmid/&rfr_iscdi=true