Loading…

Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach

Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RN...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.7755-12, Article 7755
Main Authors: Zarringhalam, Kourosh, Tay, Yvonne, Kulkarni, Prajna, Bester, Assaf C., Pandolfi, Pier Paolo, Kulkarni, Rahul V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3
cites cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3
container_end_page 12
container_issue 1
container_start_page 7755
container_title Scientific reports
container_volume 7
creator Zarringhalam, Kourosh
Tay, Yvonne
Kulkarni, Prajna
Bester, Assaf C.
Pandolfi, Pier Paolo
Kulkarni, Rahul V.
description Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.
doi_str_mv 10.1038/s41598-017-08209-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc</doaj_id><sourcerecordid>1957183041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</originalsourceid><addsrcrecordid>eNp1Uk1rFTEUDaLYUvsHXEjAjZupSWbykrgQHqXaB6WK1HXI57w8ZiZjMlPw35vp1PIqmE0Oueeee3M4ALzF6AKjmn_MDaaCVwizCnGCRIVfgFOCGlqRmpCXR_gEnOd8QOVQIhosXoMTwpngDcOnoN1ZN0zBB6OmEAcYPTSxH90Uhha6wcbWDXHO8MftNi_Fae_gNPcxwTyPY3I5F1g4Dn6_u7r9BLdwTFErHbqQp2CgKqSozP4NeOVVl935430Gfn65uru8rm6-fd1dbm8qQxs0VRuBOFeM1YIwpjnmNWXCI-dry4VubEEYc2PphhutFaZEec4U09ou2NZnYLfq2qgOckyhV-m3jCrIh4eYWqlSWaxzUjinvbd-oxreIFYrrzkilpKN4WWOKVqfV61x1r2zphiVVPdM9HllCHvZxntJKSWc4yLw4VEgxV-zy5PsQzau69TgiqkSC8IpooyhQn3_D_UQ5zQUqwqLsmIEahZBsrJMijkn55-WwUgusZBrLGSJhXyIhVya3h1_46nlbwgKoV4JuZSG1qWj2f-X_QMMdcQi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957183041</pqid></control><display><type>article</type><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</creator><creatorcontrib>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</creatorcontrib><description>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-08209-1</identifier><identifier>PMID: 28798471</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions ; 38/109 ; 38/77 ; 38/91 ; 631/114/2114 ; 631/114/2397 ; Binding sites ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humanities and Social Sciences ; Humans ; Mathematical models ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Models, Theoretical ; multidisciplinary ; Probability ; Prostate cancer ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - metabolism ; PTEN protein ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science ; Science (multidisciplinary) ; Spatial distribution ; Target recognition ; Transcription ; Tumor cell lines ; Tumor suppressor genes</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7755-12, Article 7755</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</citedby><cites>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957183041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957183041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28798471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><creatorcontrib>Tay, Yvonne</creatorcontrib><creatorcontrib>Kulkarni, Prajna</creatorcontrib><creatorcontrib>Bester, Assaf C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Kulkarni, Rahul V.</creatorcontrib><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</description><subject>3' Untranslated Regions</subject><subject>38/109</subject><subject>38/77</subject><subject>38/91</subject><subject>631/114/2114</subject><subject>631/114/2397</subject><subject>Binding sites</subject><subject>Cell Line, Tumor</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Probability</subject><subject>Prostate cancer</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>PTEN protein</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial distribution</subject><subject>Target recognition</subject><subject>Transcription</subject><subject>Tumor cell lines</subject><subject>Tumor suppressor genes</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1rFTEUDaLYUvsHXEjAjZupSWbykrgQHqXaB6WK1HXI57w8ZiZjMlPw35vp1PIqmE0Oueeee3M4ALzF6AKjmn_MDaaCVwizCnGCRIVfgFOCGlqRmpCXR_gEnOd8QOVQIhosXoMTwpngDcOnoN1ZN0zBB6OmEAcYPTSxH90Uhha6wcbWDXHO8MftNi_Fae_gNPcxwTyPY3I5F1g4Dn6_u7r9BLdwTFErHbqQp2CgKqSozP4NeOVVl935430Gfn65uru8rm6-fd1dbm8qQxs0VRuBOFeM1YIwpjnmNWXCI-dry4VubEEYc2PphhutFaZEec4U09ou2NZnYLfq2qgOckyhV-m3jCrIh4eYWqlSWaxzUjinvbd-oxreIFYrrzkilpKN4WWOKVqfV61x1r2zphiVVPdM9HllCHvZxntJKSWc4yLw4VEgxV-zy5PsQzau69TgiqkSC8IpooyhQn3_D_UQ5zQUqwqLsmIEahZBsrJMijkn55-WwUgusZBrLGSJhXyIhVya3h1_46nlbwgKoV4JuZSG1qWj2f-X_QMMdcQi</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Zarringhalam, Kourosh</creator><creator>Tay, Yvonne</creator><creator>Kulkarni, Prajna</creator><creator>Bester, Assaf C.</creator><creator>Pandolfi, Pier Paolo</creator><creator>Kulkarni, Rahul V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170810</creationdate><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><author>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3' Untranslated Regions</topic><topic>38/109</topic><topic>38/77</topic><topic>38/91</topic><topic>631/114/2114</topic><topic>631/114/2397</topic><topic>Binding sites</topic><topic>Cell Line, Tumor</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Probability</topic><topic>Prostate cancer</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>PTEN protein</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial distribution</topic><topic>Target recognition</topic><topic>Transcription</topic><topic>Tumor cell lines</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><creatorcontrib>Tay, Yvonne</creatorcontrib><creatorcontrib>Kulkarni, Prajna</creatorcontrib><creatorcontrib>Bester, Assaf C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Kulkarni, Rahul V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarringhalam, Kourosh</au><au>Tay, Yvonne</au><au>Kulkarni, Prajna</au><au>Bester, Assaf C.</au><au>Pandolfi, Pier Paolo</au><au>Kulkarni, Rahul V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7755</spage><epage>12</epage><pages>7755-12</pages><artnum>7755</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28798471</pmid><doi>10.1038/s41598-017-08209-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.7755-12, Article 7755
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 3' Untranslated Regions
38/109
38/77
38/91
631/114/2114
631/114/2397
Binding sites
Cell Line, Tumor
Gene Expression Regulation, Neoplastic
Humanities and Social Sciences
Humans
Mathematical models
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Models, Theoretical
multidisciplinary
Probability
Prostate cancer
PTEN Phosphohydrolase - genetics
PTEN Phosphohydrolase - metabolism
PTEN protein
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Spatial distribution
Target recognition
Transcription
Tumor cell lines
Tumor suppressor genes
title Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20competing%20endogenous%20RNAs%20of%20the%20tumor%20suppressor%20gene%20PTEN:%20A%20probabilistic%20approach&rft.jtitle=Scientific%20reports&rft.au=Zarringhalam,%20Kourosh&rft.date=2017-08-10&rft.volume=7&rft.issue=1&rft.spage=7755&rft.epage=12&rft.pages=7755-12&rft.artnum=7755&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-08209-1&rft_dat=%3Cproquest_doaj_%3E1957183041%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957183041&rft_id=info:pmid/28798471&rfr_iscdi=true