Loading…
Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach
Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RN...
Saved in:
Published in: | Scientific reports 2017-08, Vol.7 (1), p.7755-12, Article 7755 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 7755 |
container_title | Scientific reports |
container_volume | 7 |
creator | Zarringhalam, Kourosh Tay, Yvonne Kulkarni, Prajna Bester, Assaf C. Pandolfi, Pier Paolo Kulkarni, Rahul V. |
description | Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer. |
doi_str_mv | 10.1038/s41598-017-08209-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc</doaj_id><sourcerecordid>1957183041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</originalsourceid><addsrcrecordid>eNp1Uk1rFTEUDaLYUvsHXEjAjZupSWbykrgQHqXaB6WK1HXI57w8ZiZjMlPw35vp1PIqmE0Oueeee3M4ALzF6AKjmn_MDaaCVwizCnGCRIVfgFOCGlqRmpCXR_gEnOd8QOVQIhosXoMTwpngDcOnoN1ZN0zBB6OmEAcYPTSxH90Uhha6wcbWDXHO8MftNi_Fae_gNPcxwTyPY3I5F1g4Dn6_u7r9BLdwTFErHbqQp2CgKqSozP4NeOVVl935430Gfn65uru8rm6-fd1dbm8qQxs0VRuBOFeM1YIwpjnmNWXCI-dry4VubEEYc2PphhutFaZEec4U09ou2NZnYLfq2qgOckyhV-m3jCrIh4eYWqlSWaxzUjinvbd-oxreIFYrrzkilpKN4WWOKVqfV61x1r2zphiVVPdM9HllCHvZxntJKSWc4yLw4VEgxV-zy5PsQzau69TgiqkSC8IpooyhQn3_D_UQ5zQUqwqLsmIEahZBsrJMijkn55-WwUgusZBrLGSJhXyIhVya3h1_46nlbwgKoV4JuZSG1qWj2f-X_QMMdcQi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957183041</pqid></control><display><type>article</type><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</creator><creatorcontrib>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</creatorcontrib><description>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-08209-1</identifier><identifier>PMID: 28798471</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>3' Untranslated Regions ; 38/109 ; 38/77 ; 38/91 ; 631/114/2114 ; 631/114/2397 ; Binding sites ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humanities and Social Sciences ; Humans ; Mathematical models ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Models, Theoretical ; multidisciplinary ; Probability ; Prostate cancer ; PTEN Phosphohydrolase - genetics ; PTEN Phosphohydrolase - metabolism ; PTEN protein ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science ; Science (multidisciplinary) ; Spatial distribution ; Target recognition ; Transcription ; Tumor cell lines ; Tumor suppressor genes</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.7755-12, Article 7755</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</citedby><cites>FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957183041/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957183041?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28798471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><creatorcontrib>Tay, Yvonne</creatorcontrib><creatorcontrib>Kulkarni, Prajna</creatorcontrib><creatorcontrib>Bester, Assaf C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Kulkarni, Rahul V.</creatorcontrib><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</description><subject>3' Untranslated Regions</subject><subject>38/109</subject><subject>38/77</subject><subject>38/91</subject><subject>631/114/2114</subject><subject>631/114/2397</subject><subject>Binding sites</subject><subject>Cell Line, Tumor</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Probability</subject><subject>Prostate cancer</subject><subject>PTEN Phosphohydrolase - genetics</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>PTEN protein</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial distribution</subject><subject>Target recognition</subject><subject>Transcription</subject><subject>Tumor cell lines</subject><subject>Tumor suppressor genes</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1rFTEUDaLYUvsHXEjAjZupSWbykrgQHqXaB6WK1HXI57w8ZiZjMlPw35vp1PIqmE0Oueeee3M4ALzF6AKjmn_MDaaCVwizCnGCRIVfgFOCGlqRmpCXR_gEnOd8QOVQIhosXoMTwpngDcOnoN1ZN0zBB6OmEAcYPTSxH90Uhha6wcbWDXHO8MftNi_Fae_gNPcxwTyPY3I5F1g4Dn6_u7r9BLdwTFErHbqQp2CgKqSozP4NeOVVl935430Gfn65uru8rm6-fd1dbm8qQxs0VRuBOFeM1YIwpjnmNWXCI-dry4VubEEYc2PphhutFaZEec4U09ou2NZnYLfq2qgOckyhV-m3jCrIh4eYWqlSWaxzUjinvbd-oxreIFYrrzkilpKN4WWOKVqfV61x1r2zphiVVPdM9HllCHvZxntJKSWc4yLw4VEgxV-zy5PsQzau69TgiqkSC8IpooyhQn3_D_UQ5zQUqwqLsmIEahZBsrJMijkn55-WwUgusZBrLGSJhXyIhVya3h1_46nlbwgKoV4JuZSG1qWj2f-X_QMMdcQi</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>Zarringhalam, Kourosh</creator><creator>Tay, Yvonne</creator><creator>Kulkarni, Prajna</creator><creator>Bester, Assaf C.</creator><creator>Pandolfi, Pier Paolo</creator><creator>Kulkarni, Rahul V.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170810</creationdate><title>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</title><author>Zarringhalam, Kourosh ; Tay, Yvonne ; Kulkarni, Prajna ; Bester, Assaf C. ; Pandolfi, Pier Paolo ; Kulkarni, Rahul V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3' Untranslated Regions</topic><topic>38/109</topic><topic>38/77</topic><topic>38/91</topic><topic>631/114/2114</topic><topic>631/114/2397</topic><topic>Binding sites</topic><topic>Cell Line, Tumor</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Probability</topic><topic>Prostate cancer</topic><topic>PTEN Phosphohydrolase - genetics</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>PTEN protein</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial distribution</topic><topic>Target recognition</topic><topic>Transcription</topic><topic>Tumor cell lines</topic><topic>Tumor suppressor genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zarringhalam, Kourosh</creatorcontrib><creatorcontrib>Tay, Yvonne</creatorcontrib><creatorcontrib>Kulkarni, Prajna</creatorcontrib><creatorcontrib>Bester, Assaf C.</creatorcontrib><creatorcontrib>Pandolfi, Pier Paolo</creatorcontrib><creatorcontrib>Kulkarni, Rahul V.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zarringhalam, Kourosh</au><au>Tay, Yvonne</au><au>Kulkarni, Prajna</au><au>Bester, Assaf C.</au><au>Pandolfi, Pier Paolo</au><au>Kulkarni, Rahul V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-10</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>7755</spage><epage>12</epage><pages>7755-12</pages><artnum>7755</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Regulation by microRNAs (miRNAs) and modulation of miRNA activity are critical components of diverse cellular processes. Recent research has shown that miRNA-based regulation of the tumor suppressor gene PTEN can be modulated by the expression of other miRNA targets acting as competing endogenous RNAs (ceRNAs). However, the key sequence-based features enabling a transcript to act as an effective ceRNA are not well understood and a quantitative model associating statistical significance to such features is currently lacking. To identify and assess features characterizing target recognition by PTEN-regulating miRNAs, we analyze multiple datasets from PAR-CLIP experiments in conjunction with RNA-Seq data. We consider a set of miRNAs known to regulate PTEN and identify high-confidence binding sites for these miRNAs on the 3′ UTR of protein coding genes. Based on the number and spatial distribution of these binding sites, we calculate a set of probabilistic features that are used to make predictions for novel ceRNAs of PTEN. Using a series of experiments in human prostate cancer cell lines, we validate the highest ranking prediction (TNRC6B) as a ceRNA of PTEN. The approach developed can be applied to map ceRNA networks of critical cellular regulators and to develop novel insights into crosstalk between different pathways involved in cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28798471</pmid><doi>10.1038/s41598-017-08209-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-08, Vol.7 (1), p.7755-12, Article 7755 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9eebffdf6a484073afb802d526c80efc |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 3' Untranslated Regions 38/109 38/77 38/91 631/114/2114 631/114/2397 Binding sites Cell Line, Tumor Gene Expression Regulation, Neoplastic Humanities and Social Sciences Humans Mathematical models MicroRNAs - genetics MicroRNAs - metabolism miRNA Models, Theoretical multidisciplinary Probability Prostate cancer PTEN Phosphohydrolase - genetics PTEN Phosphohydrolase - metabolism PTEN protein RNA, Messenger - genetics RNA, Messenger - metabolism Science Science (multidisciplinary) Spatial distribution Target recognition Transcription Tumor cell lines Tumor suppressor genes |
title | Identification of competing endogenous RNAs of the tumor suppressor gene PTEN: A probabilistic approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20competing%20endogenous%20RNAs%20of%20the%20tumor%20suppressor%20gene%20PTEN:%20A%20probabilistic%20approach&rft.jtitle=Scientific%20reports&rft.au=Zarringhalam,%20Kourosh&rft.date=2017-08-10&rft.volume=7&rft.issue=1&rft.spage=7755&rft.epage=12&rft.pages=7755-12&rft.artnum=7755&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-08209-1&rft_dat=%3Cproquest_doaj_%3E1957183041%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-69088a7739277b8183579f0ef3d89b4d0ef118cd568cbba152af87a7bbd152ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957183041&rft_id=info:pmid/28798471&rfr_iscdi=true |