Loading…

AUV Adaptive Sampling Methods: A Review

Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent be...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-08, Vol.9 (15), p.3145
Main Authors: Hwang, Jimin, Bose, Neil, Fan, Shuangshuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3
cites cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3
container_end_page
container_issue 15
container_start_page 3145
container_title Applied sciences
container_volume 9
creator Hwang, Jimin
Bose, Neil
Fan, Shuangshuang
description Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.
doi_str_mv 10.3390/app9153145
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad</doaj_id><sourcerecordid>2323134664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsNS--AsCPghCdO_Z9S0UL4WKoNbXZZKdrSltEzdpxX9vakWdh5lhOHxzOIScMnophKVX0DSWKcGkOiADTjOdCsmyw3_7MRm17YL2ZZkwjA7IeT57TXIPTVdtMXmGVbOs1vPkAbu32rfXSZ484bbCjxNyFGDZ4uhnDsns9uZlfJ9OH-8m43yalpJnXapKHRTVhSl1z-fIvTIsCK1A6N6jNUXIoNAZ5WAy41EGy0LBqaQGOQQvhmSy5_oaFq6J1Qrip6uhct-HOs4dxK4ql-gsomcZlR77hspYUBCE1YF57TXsWGd7VhPr9w22nVvUm7ju7TsuuGBCai171cVeVca6bSOG36-Mul2u7i9X8QX2q2c3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323134664</pqid></control><display><type>article</type><title>AUV Adaptive Sampling Methods: A Review</title><source>Publicly Available Content (ProQuest)</source><creator>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</creator><creatorcontrib>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</creatorcontrib><description>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9153145</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Algal blooms ; Automation ; autonomous underwater vehicle(s) ; Autonomous underwater vehicles ; Autonomy ; Behavior ; Eutrophication ; in-situ sensors ; maritime robotics ; Oceans ; Robotics ; Robots ; Sampling methods ; sensor fusion ; Sensors ; underwater feature tracking ; Vehicles ; Vertical migrations ; Water purification</subject><ispartof>Applied sciences, 2019-08, Vol.9 (15), p.3145</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</citedby><cites>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</cites><orcidid>0000-0002-9641-0631 ; 0000-0002-6444-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2323134664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2323134664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hwang, Jimin</creatorcontrib><creatorcontrib>Bose, Neil</creatorcontrib><creatorcontrib>Fan, Shuangshuang</creatorcontrib><title>AUV Adaptive Sampling Methods: A Review</title><title>Applied sciences</title><description>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</description><subject>Adaptive sampling</subject><subject>Algal blooms</subject><subject>Automation</subject><subject>autonomous underwater vehicle(s)</subject><subject>Autonomous underwater vehicles</subject><subject>Autonomy</subject><subject>Behavior</subject><subject>Eutrophication</subject><subject>in-situ sensors</subject><subject>maritime robotics</subject><subject>Oceans</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sampling methods</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>underwater feature tracking</subject><subject>Vehicles</subject><subject>Vertical migrations</subject><subject>Water purification</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLw0AQhRdRsNS--AsCPghCdO_Z9S0UL4WKoNbXZZKdrSltEzdpxX9vakWdh5lhOHxzOIScMnophKVX0DSWKcGkOiADTjOdCsmyw3_7MRm17YL2ZZkwjA7IeT57TXIPTVdtMXmGVbOs1vPkAbu32rfXSZ484bbCjxNyFGDZ4uhnDsns9uZlfJ9OH-8m43yalpJnXapKHRTVhSl1z-fIvTIsCK1A6N6jNUXIoNAZ5WAy41EGy0LBqaQGOQQvhmSy5_oaFq6J1Qrip6uhct-HOs4dxK4ql-gsomcZlR77hspYUBCE1YF57TXsWGd7VhPr9w22nVvUm7ju7TsuuGBCai171cVeVca6bSOG36-Mul2u7i9X8QX2q2c3</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hwang, Jimin</creator><creator>Bose, Neil</creator><creator>Fan, Shuangshuang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9641-0631</orcidid><orcidid>https://orcid.org/0000-0002-6444-0756</orcidid></search><sort><creationdate>20190801</creationdate><title>AUV Adaptive Sampling Methods: A Review</title><author>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sampling</topic><topic>Algal blooms</topic><topic>Automation</topic><topic>autonomous underwater vehicle(s)</topic><topic>Autonomous underwater vehicles</topic><topic>Autonomy</topic><topic>Behavior</topic><topic>Eutrophication</topic><topic>in-situ sensors</topic><topic>maritime robotics</topic><topic>Oceans</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sampling methods</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>underwater feature tracking</topic><topic>Vehicles</topic><topic>Vertical migrations</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jimin</creatorcontrib><creatorcontrib>Bose, Neil</creatorcontrib><creatorcontrib>Fan, Shuangshuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jimin</au><au>Bose, Neil</au><au>Fan, Shuangshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUV Adaptive Sampling Methods: A Review</atitle><jtitle>Applied sciences</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>9</volume><issue>15</issue><spage>3145</spage><pages>3145-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9153145</doi><orcidid>https://orcid.org/0000-0002-9641-0631</orcidid><orcidid>https://orcid.org/0000-0002-6444-0756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-08, Vol.9 (15), p.3145
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad
source Publicly Available Content (ProQuest)
subjects Adaptive sampling
Algal blooms
Automation
autonomous underwater vehicle(s)
Autonomous underwater vehicles
Autonomy
Behavior
Eutrophication
in-situ sensors
maritime robotics
Oceans
Robotics
Robots
Sampling methods
sensor fusion
Sensors
underwater feature tracking
Vehicles
Vertical migrations
Water purification
title AUV Adaptive Sampling Methods: A Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUV%20Adaptive%20Sampling%20Methods:%20A%20Review&rft.jtitle=Applied%20sciences&rft.au=Hwang,%20Jimin&rft.date=2019-08-01&rft.volume=9&rft.issue=15&rft.spage=3145&rft.pages=3145-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9153145&rft_dat=%3Cproquest_doaj_%3E2323134664%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2323134664&rft_id=info:pmid/&rfr_iscdi=true