Loading…
AUV Adaptive Sampling Methods: A Review
Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent be...
Saved in:
Published in: | Applied sciences 2019-08, Vol.9 (15), p.3145 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3 |
container_end_page | |
container_issue | 15 |
container_start_page | 3145 |
container_title | Applied sciences |
container_volume | 9 |
creator | Hwang, Jimin Bose, Neil Fan, Shuangshuang |
description | Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed. |
doi_str_mv | 10.3390/app9153145 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad</doaj_id><sourcerecordid>2323134664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRsNS--AsCPghCdO_Z9S0UL4WKoNbXZZKdrSltEzdpxX9vakWdh5lhOHxzOIScMnophKVX0DSWKcGkOiADTjOdCsmyw3_7MRm17YL2ZZkwjA7IeT57TXIPTVdtMXmGVbOs1vPkAbu32rfXSZ484bbCjxNyFGDZ4uhnDsns9uZlfJ9OH-8m43yalpJnXapKHRTVhSl1z-fIvTIsCK1A6N6jNUXIoNAZ5WAy41EGy0LBqaQGOQQvhmSy5_oaFq6J1Qrip6uhct-HOs4dxK4ql-gsomcZlR77hspYUBCE1YF57TXsWGd7VhPr9w22nVvUm7ju7TsuuGBCai171cVeVca6bSOG36-Mul2u7i9X8QX2q2c3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2323134664</pqid></control><display><type>article</type><title>AUV Adaptive Sampling Methods: A Review</title><source>Publicly Available Content (ProQuest)</source><creator>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</creator><creatorcontrib>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</creatorcontrib><description>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9153145</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptive sampling ; Algal blooms ; Automation ; autonomous underwater vehicle(s) ; Autonomous underwater vehicles ; Autonomy ; Behavior ; Eutrophication ; in-situ sensors ; maritime robotics ; Oceans ; Robotics ; Robots ; Sampling methods ; sensor fusion ; Sensors ; underwater feature tracking ; Vehicles ; Vertical migrations ; Water purification</subject><ispartof>Applied sciences, 2019-08, Vol.9 (15), p.3145</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</citedby><cites>FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</cites><orcidid>0000-0002-9641-0631 ; 0000-0002-6444-0756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2323134664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2323134664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Hwang, Jimin</creatorcontrib><creatorcontrib>Bose, Neil</creatorcontrib><creatorcontrib>Fan, Shuangshuang</creatorcontrib><title>AUV Adaptive Sampling Methods: A Review</title><title>Applied sciences</title><description>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</description><subject>Adaptive sampling</subject><subject>Algal blooms</subject><subject>Automation</subject><subject>autonomous underwater vehicle(s)</subject><subject>Autonomous underwater vehicles</subject><subject>Autonomy</subject><subject>Behavior</subject><subject>Eutrophication</subject><subject>in-situ sensors</subject><subject>maritime robotics</subject><subject>Oceans</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sampling methods</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>underwater feature tracking</subject><subject>Vehicles</subject><subject>Vertical migrations</subject><subject>Water purification</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLw0AQhRdRsNS--AsCPghCdO_Z9S0UL4WKoNbXZZKdrSltEzdpxX9vakWdh5lhOHxzOIScMnophKVX0DSWKcGkOiADTjOdCsmyw3_7MRm17YL2ZZkwjA7IeT57TXIPTVdtMXmGVbOs1vPkAbu32rfXSZ484bbCjxNyFGDZ4uhnDsns9uZlfJ9OH-8m43yalpJnXapKHRTVhSl1z-fIvTIsCK1A6N6jNUXIoNAZ5WAy41EGy0LBqaQGOQQvhmSy5_oaFq6J1Qrip6uhct-HOs4dxK4ql-gsomcZlR77hspYUBCE1YF57TXsWGd7VhPr9w22nVvUm7ju7TsuuGBCai171cVeVca6bSOG36-Mul2u7i9X8QX2q2c3</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Hwang, Jimin</creator><creator>Bose, Neil</creator><creator>Fan, Shuangshuang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9641-0631</orcidid><orcidid>https://orcid.org/0000-0002-6444-0756</orcidid></search><sort><creationdate>20190801</creationdate><title>AUV Adaptive Sampling Methods: A Review</title><author>Hwang, Jimin ; Bose, Neil ; Fan, Shuangshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sampling</topic><topic>Algal blooms</topic><topic>Automation</topic><topic>autonomous underwater vehicle(s)</topic><topic>Autonomous underwater vehicles</topic><topic>Autonomy</topic><topic>Behavior</topic><topic>Eutrophication</topic><topic>in-situ sensors</topic><topic>maritime robotics</topic><topic>Oceans</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sampling methods</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>underwater feature tracking</topic><topic>Vehicles</topic><topic>Vertical migrations</topic><topic>Water purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jimin</creatorcontrib><creatorcontrib>Bose, Neil</creatorcontrib><creatorcontrib>Fan, Shuangshuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jimin</au><au>Bose, Neil</au><au>Fan, Shuangshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AUV Adaptive Sampling Methods: A Review</atitle><jtitle>Applied sciences</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>9</volume><issue>15</issue><spage>3145</spage><pages>3145-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9153145</doi><orcidid>https://orcid.org/0000-0002-9641-0631</orcidid><orcidid>https://orcid.org/0000-0002-6444-0756</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2019-08, Vol.9 (15), p.3145 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9eed1704de704e589a5af396f1d6d6ad |
source | Publicly Available Content (ProQuest) |
subjects | Adaptive sampling Algal blooms Automation autonomous underwater vehicle(s) Autonomous underwater vehicles Autonomy Behavior Eutrophication in-situ sensors maritime robotics Oceans Robotics Robots Sampling methods sensor fusion Sensors underwater feature tracking Vehicles Vertical migrations Water purification |
title | AUV Adaptive Sampling Methods: A Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AUV%20Adaptive%20Sampling%20Methods:%20A%20Review&rft.jtitle=Applied%20sciences&rft.au=Hwang,%20Jimin&rft.date=2019-08-01&rft.volume=9&rft.issue=15&rft.spage=3145&rft.pages=3145-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9153145&rft_dat=%3Cproquest_doaj_%3E2323134664%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-5c6f506b8c63812e2d581f365a3633998bf7ab6702a878de4f91fb20408e2afd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2323134664&rft_id=info:pmid/&rfr_iscdi=true |