Loading…

Quantitative characterization of 3D bioprinted structural elements under cell generated forces

With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, eve...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-07, Vol.10 (1), p.3029-9, Article 3029
Main Authors: Morley, Cameron D., Ellison, S. Tori, Bhattacharjee, Tapomoy, O’Bryan, Christopher S., Zhang, Yifan, Smith, Kourtney F., Kabb, Christopher P., Sebastian, Mathew, Moore, Ginger L., Schulze, Kyle D., Niemi, Sean, Sawyer, W. Gregory, Tran, David D., Mitchell, Duane A., Sumerlin, Brent S., Flores, Catherine T., Angelini, Thomas E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3
cites cdi_FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3
container_end_page 9
container_issue 1
container_start_page 3029
container_title Nature communications
container_volume 10
creator Morley, Cameron D.
Ellison, S. Tori
Bhattacharjee, Tapomoy
O’Bryan, Christopher S.
Zhang, Yifan
Smith, Kourtney F.
Kabb, Christopher P.
Sebastian, Mathew
Moore, Ginger L.
Schulze, Kyle D.
Niemi, Sean
Sawyer, W. Gregory
Tran, David D.
Mitchell, Duane A.
Sumerlin, Brent S.
Flores, Catherine T.
Angelini, Thomas E.
description With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future. Advances in biofabrication technology enable 3D printed constructs to resemble real tissues, but it remains unclear how cell-generated forces deform these constructs. Here the authors investigate mechanical behaviours of 3D printed “microbeams” made from mixtures of living cells and extracellular matrix.
doi_str_mv 10.1038/s41467-019-10919-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9eef90c4959f4d7aac09a9717b1967dd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9eef90c4959f4d7aac09a9717b1967dd</doaj_id><sourcerecordid>2256106680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3</originalsourceid><addsrcrecordid>eNp9kk9rFjEQxhdRbKn9Ah5kwYuX1UySzZ-LINVqoVAK9WrIZidv92XfTU2yBf30zXZrbXtoDkmY_ObJzPBU1VsgH4Ew9Slx4EI2BHQDRC_7i2qfEg4NSMpePrjvVYcpbUlZTIPi_HW1x4Bqyjnfr36dz3bKQ7Z5uMbaXdpoXcY4_C2BMNXB1-xr3Q3hKg5Txr5OOc4uz9GONY64wymnep56jLXDcaw3OGG0C-hDdJjeVK-8HRMe3p0H1c_jbxdHP5rTs-8nR19OGycYzw0gEZS7UqGlnXIAgEgt7yTzFlqhdNcyodpWAuFceKqAiI55lNJT0XY9O6hOVt0-2K0pxe5s_GOCHcxtIMSNsTEPbkSjEb0mjutWe95Lax3RVkuQHWgh-0Xr86p1NXc77F3psbT7SPTxyzRcmk24NkJQQrUqAh_uBGL4PWPKZjekZTx2wjAnQ2krSgNCkYK-f4JuwxynMirDgDFVIMWeo4pWy7kCaAtFV8rFkFJEf18yELN4xqyeMcUz5tYzBkrSu4fN3qf8c0gB2AqkxQIbjP__fkb2BuHUy-8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255448115</pqid></control><display><type>article</type><title>Quantitative characterization of 3D bioprinted structural elements under cell generated forces</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature Journals Online</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Morley, Cameron D. ; Ellison, S. Tori ; Bhattacharjee, Tapomoy ; O’Bryan, Christopher S. ; Zhang, Yifan ; Smith, Kourtney F. ; Kabb, Christopher P. ; Sebastian, Mathew ; Moore, Ginger L. ; Schulze, Kyle D. ; Niemi, Sean ; Sawyer, W. Gregory ; Tran, David D. ; Mitchell, Duane A. ; Sumerlin, Brent S. ; Flores, Catherine T. ; Angelini, Thomas E.</creator><creatorcontrib>Morley, Cameron D. ; Ellison, S. Tori ; Bhattacharjee, Tapomoy ; O’Bryan, Christopher S. ; Zhang, Yifan ; Smith, Kourtney F. ; Kabb, Christopher P. ; Sebastian, Mathew ; Moore, Ginger L. ; Schulze, Kyle D. ; Niemi, Sean ; Sawyer, W. Gregory ; Tran, David D. ; Mitchell, Duane A. ; Sumerlin, Brent S. ; Flores, Catherine T. ; Angelini, Thomas E.</creatorcontrib><description>With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future. Advances in biofabrication technology enable 3D printed constructs to resemble real tissues, but it remains unclear how cell-generated forces deform these constructs. Here the authors investigate mechanical behaviours of 3D printed “microbeams” made from mixtures of living cells and extracellular matrix.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10919-1</identifier><identifier>PMID: 31292444</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/107 ; 14/19 ; 14/34 ; 3-D printers ; 631/57 ; 639/166/985 ; 639/301/54/2295 ; Acrylic Resins - chemistry ; Animals ; Behavior ; Biocompatible Materials ; Bioengineering ; Bioprinting - methods ; Brain cancer ; Cell culture ; Cell Culture Techniques - methods ; Cell Line, Tumor ; Cells (biology) ; Collagen ; Construction ; Contraction ; Deformation mechanisms ; Equilibrium ; Extracellular Matrix ; Gels - chemistry ; Humanities and Social Sciences ; Materials Testing ; Mechanical properties ; Mechanics ; Methacrylates - chemistry ; Mice ; Microbeams ; Microgels ; multidisciplinary ; Neurosurgery ; NIH 3T3 Cells ; Printing, Three-Dimensional ; Science ; Science (multidisciplinary) ; Static stability ; Structural analysis ; Structural failure ; Structural members ; Three dimensional printing ; Tissue engineering ; Tissue Engineering - methods</subject><ispartof>Nature communications, 2019-07, Vol.10 (1), p.3029-9, Article 3029</ispartof><rights>The Author(s) 2019</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3</citedby><cites>FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3</cites><orcidid>0000-0003-0852-6085 ; 0000-0002-5125-2705 ; 0000-0003-4002-1650 ; 0000-0001-8433-0581 ; 0000-0002-7605-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133866883/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133866883?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31292444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morley, Cameron D.</creatorcontrib><creatorcontrib>Ellison, S. Tori</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomoy</creatorcontrib><creatorcontrib>O’Bryan, Christopher S.</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Smith, Kourtney F.</creatorcontrib><creatorcontrib>Kabb, Christopher P.</creatorcontrib><creatorcontrib>Sebastian, Mathew</creatorcontrib><creatorcontrib>Moore, Ginger L.</creatorcontrib><creatorcontrib>Schulze, Kyle D.</creatorcontrib><creatorcontrib>Niemi, Sean</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Tran, David D.</creatorcontrib><creatorcontrib>Mitchell, Duane A.</creatorcontrib><creatorcontrib>Sumerlin, Brent S.</creatorcontrib><creatorcontrib>Flores, Catherine T.</creatorcontrib><creatorcontrib>Angelini, Thomas E.</creatorcontrib><title>Quantitative characterization of 3D bioprinted structural elements under cell generated forces</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future. Advances in biofabrication technology enable 3D printed constructs to resemble real tissues, but it remains unclear how cell-generated forces deform these constructs. Here the authors investigate mechanical behaviours of 3D printed “microbeams” made from mixtures of living cells and extracellular matrix.</description><subject>13/106</subject><subject>13/107</subject><subject>14/19</subject><subject>14/34</subject><subject>3-D printers</subject><subject>631/57</subject><subject>639/166/985</subject><subject>639/301/54/2295</subject><subject>Acrylic Resins - chemistry</subject><subject>Animals</subject><subject>Behavior</subject><subject>Biocompatible Materials</subject><subject>Bioengineering</subject><subject>Bioprinting - methods</subject><subject>Brain cancer</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Line, Tumor</subject><subject>Cells (biology)</subject><subject>Collagen</subject><subject>Construction</subject><subject>Contraction</subject><subject>Deformation mechanisms</subject><subject>Equilibrium</subject><subject>Extracellular Matrix</subject><subject>Gels - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Methacrylates - chemistry</subject><subject>Mice</subject><subject>Microbeams</subject><subject>Microgels</subject><subject>multidisciplinary</subject><subject>Neurosurgery</subject><subject>NIH 3T3 Cells</subject><subject>Printing, Three-Dimensional</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Static stability</subject><subject>Structural analysis</subject><subject>Structural failure</subject><subject>Structural members</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9rFjEQxhdRbKn9Ah5kwYuX1UySzZ-LINVqoVAK9WrIZidv92XfTU2yBf30zXZrbXtoDkmY_ObJzPBU1VsgH4Ew9Slx4EI2BHQDRC_7i2qfEg4NSMpePrjvVYcpbUlZTIPi_HW1x4Bqyjnfr36dz3bKQ7Z5uMbaXdpoXcY4_C2BMNXB1-xr3Q3hKg5Txr5OOc4uz9GONY64wymnep56jLXDcaw3OGG0C-hDdJjeVK-8HRMe3p0H1c_jbxdHP5rTs-8nR19OGycYzw0gEZS7UqGlnXIAgEgt7yTzFlqhdNcyodpWAuFceKqAiI55lNJT0XY9O6hOVt0-2K0pxe5s_GOCHcxtIMSNsTEPbkSjEb0mjutWe95Lax3RVkuQHWgh-0Xr86p1NXc77F3psbT7SPTxyzRcmk24NkJQQrUqAh_uBGL4PWPKZjekZTx2wjAnQ2krSgNCkYK-f4JuwxynMirDgDFVIMWeo4pWy7kCaAtFV8rFkFJEf18yELN4xqyeMcUz5tYzBkrSu4fN3qf8c0gB2AqkxQIbjP__fkb2BuHUy-8</recordid><startdate>20190710</startdate><enddate>20190710</enddate><creator>Morley, Cameron D.</creator><creator>Ellison, S. Tori</creator><creator>Bhattacharjee, Tapomoy</creator><creator>O’Bryan, Christopher S.</creator><creator>Zhang, Yifan</creator><creator>Smith, Kourtney F.</creator><creator>Kabb, Christopher P.</creator><creator>Sebastian, Mathew</creator><creator>Moore, Ginger L.</creator><creator>Schulze, Kyle D.</creator><creator>Niemi, Sean</creator><creator>Sawyer, W. Gregory</creator><creator>Tran, David D.</creator><creator>Mitchell, Duane A.</creator><creator>Sumerlin, Brent S.</creator><creator>Flores, Catherine T.</creator><creator>Angelini, Thomas E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0852-6085</orcidid><orcidid>https://orcid.org/0000-0002-5125-2705</orcidid><orcidid>https://orcid.org/0000-0003-4002-1650</orcidid><orcidid>https://orcid.org/0000-0001-8433-0581</orcidid><orcidid>https://orcid.org/0000-0002-7605-2566</orcidid></search><sort><creationdate>20190710</creationdate><title>Quantitative characterization of 3D bioprinted structural elements under cell generated forces</title><author>Morley, Cameron D. ; Ellison, S. Tori ; Bhattacharjee, Tapomoy ; O’Bryan, Christopher S. ; Zhang, Yifan ; Smith, Kourtney F. ; Kabb, Christopher P. ; Sebastian, Mathew ; Moore, Ginger L. ; Schulze, Kyle D. ; Niemi, Sean ; Sawyer, W. Gregory ; Tran, David D. ; Mitchell, Duane A. ; Sumerlin, Brent S. ; Flores, Catherine T. ; Angelini, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/106</topic><topic>13/107</topic><topic>14/19</topic><topic>14/34</topic><topic>3-D printers</topic><topic>631/57</topic><topic>639/166/985</topic><topic>639/301/54/2295</topic><topic>Acrylic Resins - chemistry</topic><topic>Animals</topic><topic>Behavior</topic><topic>Biocompatible Materials</topic><topic>Bioengineering</topic><topic>Bioprinting - methods</topic><topic>Brain cancer</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Line, Tumor</topic><topic>Cells (biology)</topic><topic>Collagen</topic><topic>Construction</topic><topic>Contraction</topic><topic>Deformation mechanisms</topic><topic>Equilibrium</topic><topic>Extracellular Matrix</topic><topic>Gels - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Methacrylates - chemistry</topic><topic>Mice</topic><topic>Microbeams</topic><topic>Microgels</topic><topic>multidisciplinary</topic><topic>Neurosurgery</topic><topic>NIH 3T3 Cells</topic><topic>Printing, Three-Dimensional</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Static stability</topic><topic>Structural analysis</topic><topic>Structural failure</topic><topic>Structural members</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, Cameron D.</creatorcontrib><creatorcontrib>Ellison, S. Tori</creatorcontrib><creatorcontrib>Bhattacharjee, Tapomoy</creatorcontrib><creatorcontrib>O’Bryan, Christopher S.</creatorcontrib><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Smith, Kourtney F.</creatorcontrib><creatorcontrib>Kabb, Christopher P.</creatorcontrib><creatorcontrib>Sebastian, Mathew</creatorcontrib><creatorcontrib>Moore, Ginger L.</creatorcontrib><creatorcontrib>Schulze, Kyle D.</creatorcontrib><creatorcontrib>Niemi, Sean</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Tran, David D.</creatorcontrib><creatorcontrib>Mitchell, Duane A.</creatorcontrib><creatorcontrib>Sumerlin, Brent S.</creatorcontrib><creatorcontrib>Flores, Catherine T.</creatorcontrib><creatorcontrib>Angelini, Thomas E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morley, Cameron D.</au><au>Ellison, S. Tori</au><au>Bhattacharjee, Tapomoy</au><au>O’Bryan, Christopher S.</au><au>Zhang, Yifan</au><au>Smith, Kourtney F.</au><au>Kabb, Christopher P.</au><au>Sebastian, Mathew</au><au>Moore, Ginger L.</au><au>Schulze, Kyle D.</au><au>Niemi, Sean</au><au>Sawyer, W. Gregory</au><au>Tran, David D.</au><au>Mitchell, Duane A.</au><au>Sumerlin, Brent S.</au><au>Flores, Catherine T.</au><au>Angelini, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative characterization of 3D bioprinted structural elements under cell generated forces</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-07-10</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>3029</spage><epage>9</epage><pages>3029-9</pages><artnum>3029</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future. Advances in biofabrication technology enable 3D printed constructs to resemble real tissues, but it remains unclear how cell-generated forces deform these constructs. Here the authors investigate mechanical behaviours of 3D printed “microbeams” made from mixtures of living cells and extracellular matrix.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31292444</pmid><doi>10.1038/s41467-019-10919-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0852-6085</orcidid><orcidid>https://orcid.org/0000-0002-5125-2705</orcidid><orcidid>https://orcid.org/0000-0003-4002-1650</orcidid><orcidid>https://orcid.org/0000-0001-8433-0581</orcidid><orcidid>https://orcid.org/0000-0002-7605-2566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-07, Vol.10 (1), p.3029-9, Article 3029
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9eef90c4959f4d7aac09a9717b1967dd
source Publicly Available Content Database; PubMed Central(OpenAccess); Nature Journals Online; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/106
13/107
14/19
14/34
3-D printers
631/57
639/166/985
639/301/54/2295
Acrylic Resins - chemistry
Animals
Behavior
Biocompatible Materials
Bioengineering
Bioprinting - methods
Brain cancer
Cell culture
Cell Culture Techniques - methods
Cell Line, Tumor
Cells (biology)
Collagen
Construction
Contraction
Deformation mechanisms
Equilibrium
Extracellular Matrix
Gels - chemistry
Humanities and Social Sciences
Materials Testing
Mechanical properties
Mechanics
Methacrylates - chemistry
Mice
Microbeams
Microgels
multidisciplinary
Neurosurgery
NIH 3T3 Cells
Printing, Three-Dimensional
Science
Science (multidisciplinary)
Static stability
Structural analysis
Structural failure
Structural members
Three dimensional printing
Tissue engineering
Tissue Engineering - methods
title Quantitative characterization of 3D bioprinted structural elements under cell generated forces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20characterization%20of%203D%20bioprinted%20structural%20elements%20under%20cell%20generated%20forces&rft.jtitle=Nature%20communications&rft.au=Morley,%20Cameron%20D.&rft.date=2019-07-10&rft.volume=10&rft.issue=1&rft.spage=3029&rft.epage=9&rft.pages=3029-9&rft.artnum=3029&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10919-1&rft_dat=%3Cproquest_doaj_%3E2256106680%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c634t-1e0624c003a2b8c111ee2a4b73fa15689b536855710446f28106b3fe77f265bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2255448115&rft_id=info:pmid/31292444&rfr_iscdi=true