Loading…
Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic
In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger dist...
Saved in:
Published in: | AppliedMath 2022-08, Vol.2 (3), p.446-456 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3 |
container_end_page | 456 |
container_issue | 3 |
container_start_page | 446 |
container_title | AppliedMath |
container_volume | 2 |
creator | Ouimet, Frédéric |
description | In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting. |
doi_str_mv | 10.3390/appliedmath2030025 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</doaj_id><sourcerecordid>oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</originalsourceid><addsrcrecordid>eNpl0ctKAzEUBuBBFCzVF3CVFxjNZWYyWdZ7oVXB6nY4uUybMm2GJAXd-QhufT2fxLSKCK5O-JN8nMPJshOCTxkT-Az6vrNGryAuKGYY03IvG9CKs1wILPb_nA-z4xCWOD2pS854PcjeJ05Bh-6cX6Uy6nvvXmySrFsHBGuNHryTIG1n4yuamuitQudus9YBtc6juDBoCil9yZ_BW4gGzdClDSmRmy2yM8YxbOnOqh2MokO3Lpqus-v559tHSH8eY7oK0aqj7KCFLpjjnzrMnq6vZhe3-eT-ZnwxmuSKsjrmIDkpqGBSVAUTGreGUIEpU7JKc5JCVqVolWoLIkVZCMWkKWqChSalBoCWDbPxt6sdLJvep6H9a-PANrvA-XkDPvXTmUaYtsKSK15zXfBSAsa8lkC4YIUuCUsW_baUdyF40_56BDfbFTX_V8S-AFrsimI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><source>Directory of Open Access Journals</source><creator>Ouimet, Frédéric</creator><creatorcontrib>Ouimet, Frédéric</creatorcontrib><description>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2030025</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>asymptotic statistics ; expansion ; Hotelling’s T statistic ; Hotelling’s T-squared statistic ; local approximation ; matrix-variate normal distribution</subject><ispartof>AppliedMath, 2022-08, Vol.2 (3), p.446-456</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</cites><orcidid>0000-0001-7933-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ouimet, Frédéric</creatorcontrib><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><title>AppliedMath</title><description>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</description><subject>asymptotic statistics</subject><subject>expansion</subject><subject>Hotelling’s T statistic</subject><subject>Hotelling’s T-squared statistic</subject><subject>local approximation</subject><subject>matrix-variate normal distribution</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpl0ctKAzEUBuBBFCzVF3CVFxjNZWYyWdZ7oVXB6nY4uUybMm2GJAXd-QhufT2fxLSKCK5O-JN8nMPJshOCTxkT-Az6vrNGryAuKGYY03IvG9CKs1wILPb_nA-z4xCWOD2pS854PcjeJ05Bh-6cX6Uy6nvvXmySrFsHBGuNHryTIG1n4yuamuitQudus9YBtc6juDBoCil9yZ_BW4gGzdClDSmRmy2yM8YxbOnOqh2MokO3Lpqus-v559tHSH8eY7oK0aqj7KCFLpjjnzrMnq6vZhe3-eT-ZnwxmuSKsjrmIDkpqGBSVAUTGreGUIEpU7JKc5JCVqVolWoLIkVZCMWkKWqChSalBoCWDbPxt6sdLJvep6H9a-PANrvA-XkDPvXTmUaYtsKSK15zXfBSAsa8lkC4YIUuCUsW_baUdyF40_56BDfbFTX_V8S-AFrsimI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ouimet, Frédéric</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7933-5265</orcidid></search><sort><creationdate>20220801</creationdate><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><author>Ouimet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymptotic statistics</topic><topic>expansion</topic><topic>Hotelling’s T statistic</topic><topic>Hotelling’s T-squared statistic</topic><topic>local approximation</topic><topic>matrix-variate normal distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouimet, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouimet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</atitle><jtitle>AppliedMath</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2</volume><issue>3</issue><spage>446</spage><epage>456</epage><pages>446-456</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath2030025</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7933-5265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2022-08, Vol.2 (3), p.446-456 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513 |
source | Directory of Open Access Journals |
subjects | asymptotic statistics expansion Hotelling’s T statistic Hotelling’s T-squared statistic local approximation matrix-variate normal distribution |
title | Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Normal%20Approximations%20and%20Probability%20Metric%20Bounds%20for%20the%20Matrix-Variate%20T%20Distribution%20and%20Its%20Application%20to%20Hotelling%E2%80%99s%20T%20Statistic&rft.jtitle=AppliedMath&rft.au=Ouimet,%20Fr%C3%A9d%C3%A9ric&rft.date=2022-08-01&rft.volume=2&rft.issue=3&rft.spage=446&rft.epage=456&rft.pages=446-456&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2030025&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |