Loading…

Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic

In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger dist...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2022-08, Vol.2 (3), p.446-456
Main Author: Ouimet, Frédéric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3
container_end_page 456
container_issue 3
container_start_page 446
container_title AppliedMath
container_volume 2
creator Ouimet, Frédéric
description In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.
doi_str_mv 10.3390/appliedmath2030025
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</doaj_id><sourcerecordid>oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</originalsourceid><addsrcrecordid>eNpl0ctKAzEUBuBBFCzVF3CVFxjNZWYyWdZ7oVXB6nY4uUybMm2GJAXd-QhufT2fxLSKCK5O-JN8nMPJshOCTxkT-Az6vrNGryAuKGYY03IvG9CKs1wILPb_nA-z4xCWOD2pS854PcjeJ05Bh-6cX6Uy6nvvXmySrFsHBGuNHryTIG1n4yuamuitQudus9YBtc6juDBoCil9yZ_BW4gGzdClDSmRmy2yM8YxbOnOqh2MokO3Lpqus-v559tHSH8eY7oK0aqj7KCFLpjjnzrMnq6vZhe3-eT-ZnwxmuSKsjrmIDkpqGBSVAUTGreGUIEpU7JKc5JCVqVolWoLIkVZCMWkKWqChSalBoCWDbPxt6sdLJvep6H9a-PANrvA-XkDPvXTmUaYtsKSK15zXfBSAsa8lkC4YIUuCUsW_baUdyF40_56BDfbFTX_V8S-AFrsimI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><source>Directory of Open Access Journals</source><creator>Ouimet, Frédéric</creator><creatorcontrib>Ouimet, Frédéric</creatorcontrib><description>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2030025</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>asymptotic statistics ; expansion ; Hotelling’s T statistic ; Hotelling’s T-squared statistic ; local approximation ; matrix-variate normal distribution</subject><ispartof>AppliedMath, 2022-08, Vol.2 (3), p.446-456</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</cites><orcidid>0000-0001-7933-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ouimet, Frédéric</creatorcontrib><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><title>AppliedMath</title><description>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</description><subject>asymptotic statistics</subject><subject>expansion</subject><subject>Hotelling’s T statistic</subject><subject>Hotelling’s T-squared statistic</subject><subject>local approximation</subject><subject>matrix-variate normal distribution</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpl0ctKAzEUBuBBFCzVF3CVFxjNZWYyWdZ7oVXB6nY4uUybMm2GJAXd-QhufT2fxLSKCK5O-JN8nMPJshOCTxkT-Az6vrNGryAuKGYY03IvG9CKs1wILPb_nA-z4xCWOD2pS854PcjeJ05Bh-6cX6Uy6nvvXmySrFsHBGuNHryTIG1n4yuamuitQudus9YBtc6juDBoCil9yZ_BW4gGzdClDSmRmy2yM8YxbOnOqh2MokO3Lpqus-v559tHSH8eY7oK0aqj7KCFLpjjnzrMnq6vZhe3-eT-ZnwxmuSKsjrmIDkpqGBSVAUTGreGUIEpU7JKc5JCVqVolWoLIkVZCMWkKWqChSalBoCWDbPxt6sdLJvep6H9a-PANrvA-XkDPvXTmUaYtsKSK15zXfBSAsa8lkC4YIUuCUsW_baUdyF40_56BDfbFTX_V8S-AFrsimI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Ouimet, Frédéric</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7933-5265</orcidid></search><sort><creationdate>20220801</creationdate><title>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</title><author>Ouimet, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymptotic statistics</topic><topic>expansion</topic><topic>Hotelling’s T statistic</topic><topic>Hotelling’s T-squared statistic</topic><topic>local approximation</topic><topic>matrix-variate normal distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouimet, Frédéric</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouimet, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic</atitle><jtitle>AppliedMath</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>2</volume><issue>3</issue><spage>446</spage><epage>456</epage><pages>446-456</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>In this paper, we develop local expansions for the ratio of the centered matrix-variate T density to the centered matrix-variate normal density with the same covariances. The approximations are used to derive upper bounds on several probability metrics (such as the total variation and Hellinger distance) between the corresponding induced measures. This work extends some previous results for the univariate Student distribution to the matrix-variate setting.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath2030025</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7933-5265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2022-08, Vol.2 (3), p.446-456
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513
source Directory of Open Access Journals
subjects asymptotic statistics
expansion
Hotelling’s T statistic
Hotelling’s T-squared statistic
local approximation
matrix-variate normal distribution
title Local Normal Approximations and Probability Metric Bounds for the Matrix-Variate T Distribution and Its Application to Hotelling’s T Statistic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Normal%20Approximations%20and%20Probability%20Metric%20Bounds%20for%20the%20Matrix-Variate%20T%20Distribution%20and%20Its%20Application%20to%20Hotelling%E2%80%99s%20T%20Statistic&rft.jtitle=AppliedMath&rft.au=Ouimet,%20Fr%C3%A9d%C3%A9ric&rft.date=2022-08-01&rft.volume=2&rft.issue=3&rft.spage=446&rft.epage=456&rft.pages=446-456&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2030025&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_9ef60b7c787d475ba0078ba17934d513%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-ab714293b96439d0fe129023cb690914b659fccf41b9549c3be48109d15daaaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true